Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (8): 602-608    DOI: 10.11901/1005.3093.2021.443
  研究论文 本期目录 | 过刊浏览 |
SnO2@Ti3C2Tx 负极材料的制备及其应用
李玲芳1(), 原志朋2, 范长岭2
1.湖南文理学院机械工程学院 常德 415000
2.湖南大学材料科学与工程学院 长沙 410082
Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material
LI Lingfang1(), YUAN Zhipeng2, FAN Changling2
1.College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000, China
2.College of Materials Science and Engineering, Hunan University, Changsha 410082, China
引用本文:

李玲芳, 原志朋, 范长岭. SnO2@Ti3C2Tx 负极材料的制备及其应用[J]. 材料研究学报, 2022, 36(8): 602-608.
Lingfang LI, Zhipeng YUAN, Changling FAN. Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material[J]. Chinese Journal of Materials Research, 2022, 36(8): 602-608.

全文: PDF(7257 KB)   HTML
摘要: 

通过超声辅助和低温热处理在二维Ti3C2Tx 纳米片层间原位生长SnO2纳米颗粒,制备出纳米结构的SnO2@Ti3C2Tx 复合材料。使用X射线衍射、X射线光电子能谱和高分辨透射电子显微镜等手段对其表征,研究了这种材料的结构和性能。结果表明,SnO2纳米粒子密集分布在Ti3C2Tx 片层表面与片层之间,Ti3C2Tx 纳米薄片突出的限制效应和良好的类石墨层状结构抑制了SnO2纳米粒子的体积膨胀和团聚,加速了锂离子和电子的跃迁。同时,嵌入在片层之间的SnO2纳米粒子防止纳米片层在锂插入/脱出过程中重新堆积,使Ti3C2Tx 基体的纵向结构稳定性提高。SnO2@Ti3C2Tx 复合材料两组分之间的协同效应,使其具有良好的倍率性能与长循环性能。

关键词 复合材料SnO2/Ti3C2Tx超声辅助负极材料    
Abstract

SnO2 nanopoints were in-situ grown on and between Ti3C2Tx layers, and the nanostructured SnO2@Ti3C2Tx composites were prepared by ultrasonic adsorption and low temperature heat treatment. SnO2@Ti3C2Tx composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). Results show that SnO2 nanoparticles are densely distributed between the layers of Ti3C2Tx. Ti3C2Txowns outstanding limiting effect and graphite-like structure, it inhibits the volume expansion and agglomeration of SnO2 and accelerates the transition of lithium ions and electrons. In addition, SnO2 is embedded between the layers to improve the longitudinal structural stability of Ti3C2Tx by preventing the restacking. Therefore, SnO2@Ti3C2Tx shows a synergistic effect between the two components and has good rate and cycle performance as anode of LIBs.

Key wordscomposite    SnO2/Ti3C2Tx    ultrasound-aided    anode material
收稿日期: 2021-08-13     
ZTFLH:  TM912.9  
基金资助:国家自然科学基金(51802096);湖南省自然科学基金(2020JJ4449);湖南省教育厅重点项目(20A346)
作者简介: 李玲芳,女,1981年生
图1  Ti3C2Tx 的扫描电镜和透射电镜照片
图2  ultra-Sn-MX的扫描电镜照片、透射电镜照片和Sn-MX的扫描电镜照片
图3  试样的成分分析
图4  试样的电化学性能
图5  Ti3C2Tx 和ultra-Sn-MX的前三次循环和100次循环后的CV曲线以及三者的电化学阻抗谱
1 Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Adv. Mater. 2011, 23(37): 4248
doi: 10.1002/adma.201102306
2 Lu M, Han W, Li H, et al. Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity [J]. Energy Stor. Mater., 2019, 16: 163
3 Li K, Liang M Y, Wang H, et al. 3D mxene architectures for efficient energy storage and conversion [J]. Adv. Func. Mate., 2020, 30: 2000842
4 Ma Z, Zhou X, Deng W, et al. 3D Porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage [J]. ACS Appl. Mater. Inter., 2018, 10 (4): 3634
doi: 10.1021/acsami.7b17386
5 Yang Z X, Wu Q, Ren Y Q, et al. Massive preparation and supercapacitor performance of layered Ti3C2 [J]. Chinese J. Mater. Res., 2020, 34(11): 861
5 杨占鑫, 吴 琼, 任奕桥. 宏量制备层状Ti3C2及其超级电容的性能 [J]. 材料研究学报. 2020, 34(11): 861
doi: 10.11901/1005.3093.2020.167
6 Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J]. Chem. Mater., 2017, 29(18): 7633
doi: 10.1021/acs.chemmater.7b02847
7 Wang H, Wu Y, Yuan X, et al. Clay-inspired mxene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges [J]. Adv. Mater., 2018, 30(12): 1704561
doi: 10.1002/adma.201704561
8 Lai S, Jeon J, Jang S K, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CT x, T: -OH, -F and -O) [J]. Nanoscale. 2015, 7(46): 19390
doi: 10.1039/C5NR06513E
9 Shen C J, Wang L B, Zhang Heng, et al. Progress in electrochemical application of two-dimensional crystal materials MXene [J]. Mater. Review. 2016(30): 148
9 申长洁, 王李波, 张 恒 等. 二维晶体材料MXene的电化学应用研究进展 [J]. 材料导报, 2016, (30): 148
10 Wu Y, Ping N, Wu L, et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J]. Chem. Eng. J., 2018, 334: 932
doi: 10.1016/j.cej.2017.10.007
11 Aslam M K, Algarni T S, Javed M S, et al. 2D MXene materials for sodium ion batteries: a review on energy storage [J]. J. Ener. Stor., 2021, 37: 102478
12 Nan J, Guo X, Xiao J, et al. Nanoengineering of 2D MXene-based materials for energy storage applications [J]. Small, 2019, 17(9): 1902085
doi: 10.1002/smll.201902085
13 Yuan W, Kai Y, Peng H, et al. A flexible VOCs sensor based on 3D Mxene framework with high sensing performance [J]. J. Mater. Chem. A, 2018, 6(37): 18116
doi: 10.1039/C8TA06928J
14 Xu Z, Zhang Z, Zhen Z. MXene-based materials for electrochemical energy storage [J]. J. Ener. Chem., 2018, 27(1): 73
15 Ma Z, Zhou X, Deng W, et al. 3D Porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage [J]. ACS Appl. Mater. Inter., 2018, 10(4): 3634
doi: 10.1021/acsami.7b17386
16 Tian Y, Yang C, Que W, et al. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors [J]. J. Power Sources, 2017, 369(30): 78
doi: 10.1016/j.jpowsour.2017.09.085
17 Li L F, Yuan Z P, Fan R Z, et al. Low-temperature synthesis of pyrolytic-PVDF-coated SnO2@hard carbon nanocomposite anodes for Li-ion batteries [J]. J. Mater. Sci. Mater. Electron., 2020, 31: 6449
doi: 10.1007/s10854-020-03200-5
18 Li L F, Zeng B, Yuan Z P, et al. One step hydrothermal preparation of SnO2@c composite and it's lithium storage performance [J]. Chinese J. Mater. Res. Research., 2020, 8: 591
18 李玲芳, 曾 斌, 原志朋 等. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究 [J]. 材料研究学报, 2020, 8: 591
19 Chae Y, Kim S J, Cho S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene [J]. Nanoscale, 2019, 11: 8387
doi: 10.1039/C9NR00084D
20 Lotfi R, Naguib M, Yilmaz D E, et al. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments [J]. J. Mater. Chem. A, 2018, 6: 12733
doi: 10.1039/C8TA01468J
21 Halim J, Cook K M, Naguib M, et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) [J]. Appl. Surf. Sci., 2016, 362: 406
doi: 10.1016/j.apsusc.2015.11.089
22 Tian Q H, Zhang F, Zhang W, et al. Non-smooth carbon coating porous SnO2 quasi- nanocubes towards high lithium storage [J]. Electrochim. Acta, 2019, 307: 393
doi: 10.1016/j.electacta.2019.04.004
23 Vo V., Nguyen X. T., Jin Y. S., et al. Duong, SnO2, nanosheets/g-C3N4, composite with improved lithium storage capabilities [J]. Chem. Phys. Lett., 2017, 674: 42
doi: 10.1016/j.cplett.2017.02.057
24 Zuo D Q, Song S C, An C S, et al. ynthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage [J]. Nano Energy, 2019, 62: 401
doi: 10.1016/j.nanoen.2019.05.062
25 Yu X, Dall'Agnese Y, Naguib M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries [J]. ACS Nano, 2014, 8(9): 9606
doi: 10.1021/nn503921j
26 Ghidiu M, Halim J, Kota S, et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene [J]. Chem. Mater., 2016, 28(10): 3507
doi: 10.1021/acs.chemmater.6b01275
27 Zhang L, Zhang G, Wu H B, et al. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage [J]. Adv. Mater., 2013, 25: 2589
doi: 10.1002/adma.201300105
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.