|
|
SnO2@Ti3C2Tx 负极材料的制备及其应用 |
李玲芳1( ), 原志朋2, 范长岭2 |
1.湖南文理学院机械工程学院 常德 415000 2.湖南大学材料科学与工程学院 长沙 410082 |
|
Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material |
LI Lingfang1( ), YUAN Zhipeng2, FAN Changling2 |
1.College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000, China 2.College of Materials Science and Engineering, Hunan University, Changsha 410082, China |
引用本文:
李玲芳, 原志朋, 范长岭. SnO2@Ti3C2Tx 负极材料的制备及其应用[J]. 材料研究学报, 2022, 36(8): 602-608.
Lingfang LI,
Zhipeng YUAN,
Changling FAN.
Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material[J]. Chinese Journal of Materials Research, 2022, 36(8): 602-608.
1 |
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Adv. Mater. 2011, 23(37): 4248
doi: 10.1002/adma.201102306
|
2 |
Lu M, Han W, Li H, et al. Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity [J]. Energy Stor. Mater., 2019, 16: 163
|
3 |
Li K, Liang M Y, Wang H, et al. 3D mxene architectures for efficient energy storage and conversion [J]. Adv. Func. Mate., 2020, 30: 2000842
|
4 |
Ma Z, Zhou X, Deng W, et al. 3D Porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage [J]. ACS Appl. Mater. Inter., 2018, 10 (4): 3634
doi: 10.1021/acsami.7b17386
|
5 |
Yang Z X, Wu Q, Ren Y Q, et al. Massive preparation and supercapacitor performance of layered Ti3C2 [J]. Chinese J. Mater. Res., 2020, 34(11): 861
|
5 |
杨占鑫, 吴 琼, 任奕桥. 宏量制备层状Ti3C2及其超级电容的性能 [J]. 材料研究学报. 2020, 34(11): 861
doi: 10.11901/1005.3093.2020.167
|
6 |
Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J]. Chem. Mater., 2017, 29(18): 7633
doi: 10.1021/acs.chemmater.7b02847
|
7 |
Wang H, Wu Y, Yuan X, et al. Clay-inspired mxene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges [J]. Adv. Mater., 2018, 30(12): 1704561
doi: 10.1002/adma.201704561
|
8 |
Lai S, Jeon J, Jang S K, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CT x, T: -OH, -F and -O) [J]. Nanoscale. 2015, 7(46): 19390
doi: 10.1039/C5NR06513E
|
9 |
Shen C J, Wang L B, Zhang Heng, et al. Progress in electrochemical application of two-dimensional crystal materials MXene [J]. Mater. Review. 2016(30): 148
|
9 |
申长洁, 王李波, 张 恒 等. 二维晶体材料MXene的电化学应用研究进展 [J]. 材料导报, 2016, (30): 148
|
10 |
Wu Y, Ping N, Wu L, et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J]. Chem. Eng. J., 2018, 334: 932
doi: 10.1016/j.cej.2017.10.007
|
11 |
Aslam M K, Algarni T S, Javed M S, et al. 2D MXene materials for sodium ion batteries: a review on energy storage [J]. J. Ener. Stor., 2021, 37: 102478
|
12 |
Nan J, Guo X, Xiao J, et al. Nanoengineering of 2D MXene-based materials for energy storage applications [J]. Small, 2019, 17(9): 1902085
doi: 10.1002/smll.201902085
|
13 |
Yuan W, Kai Y, Peng H, et al. A flexible VOCs sensor based on 3D Mxene framework with high sensing performance [J]. J. Mater. Chem. A, 2018, 6(37): 18116
doi: 10.1039/C8TA06928J
|
14 |
Xu Z, Zhang Z, Zhen Z. MXene-based materials for electrochemical energy storage [J]. J. Ener. Chem., 2018, 27(1): 73
|
15 |
Ma Z, Zhou X, Deng W, et al. 3D Porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage [J]. ACS Appl. Mater. Inter., 2018, 10(4): 3634
doi: 10.1021/acsami.7b17386
|
16 |
Tian Y, Yang C, Que W, et al. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors [J]. J. Power Sources, 2017, 369(30): 78
doi: 10.1016/j.jpowsour.2017.09.085
|
17 |
Li L F, Yuan Z P, Fan R Z, et al. Low-temperature synthesis of pyrolytic-PVDF-coated SnO2@hard carbon nanocomposite anodes for Li-ion batteries [J]. J. Mater. Sci. Mater. Electron., 2020, 31: 6449
doi: 10.1007/s10854-020-03200-5
|
18 |
Li L F, Zeng B, Yuan Z P, et al. One step hydrothermal preparation of SnO2@c composite and it's lithium storage performance [J]. Chinese J. Mater. Res. Research., 2020, 8: 591
|
18 |
李玲芳, 曾 斌, 原志朋 等. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究 [J]. 材料研究学报, 2020, 8: 591
|
19 |
Chae Y, Kim S J, Cho S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene [J]. Nanoscale, 2019, 11: 8387
doi: 10.1039/C9NR00084D
|
20 |
Lotfi R, Naguib M, Yilmaz D E, et al. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments [J]. J. Mater. Chem. A, 2018, 6: 12733
doi: 10.1039/C8TA01468J
|
21 |
Halim J, Cook K M, Naguib M, et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) [J]. Appl. Surf. Sci., 2016, 362: 406
doi: 10.1016/j.apsusc.2015.11.089
|
22 |
Tian Q H, Zhang F, Zhang W, et al. Non-smooth carbon coating porous SnO2 quasi- nanocubes towards high lithium storage [J]. Electrochim. Acta, 2019, 307: 393
doi: 10.1016/j.electacta.2019.04.004
|
23 |
Vo V., Nguyen X. T., Jin Y. S., et al. Duong, SnO2, nanosheets/g-C3N4, composite with improved lithium storage capabilities [J]. Chem. Phys. Lett., 2017, 674: 42
doi: 10.1016/j.cplett.2017.02.057
|
24 |
Zuo D Q, Song S C, An C S, et al. ynthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage [J]. Nano Energy, 2019, 62: 401
doi: 10.1016/j.nanoen.2019.05.062
|
25 |
Yu X, Dall'Agnese Y, Naguib M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries [J]. ACS Nano, 2014, 8(9): 9606
doi: 10.1021/nn503921j
|
26 |
Ghidiu M, Halim J, Kota S, et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene [J]. Chem. Mater., 2016, 28(10): 3507
doi: 10.1021/acs.chemmater.6b01275
|
27 |
Zhang L, Zhang G, Wu H B, et al. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage [J]. Adv. Mater., 2013, 25: 2589
doi: 10.1002/adma.201300105
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|