Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (8): 579-590    DOI: 10.11901/1005.3093.2021.181
  研究论文 本期目录 | 过刊浏览 |
中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响
张鹏1, 黄东1,2, 张福全1(), 叶崇1,2, 伍孝1,2, 吴晃1
1.湖南大学材料科学与工程学院 先进炭材料及应用技术湖南省重点实验室 长沙 410082
2.湖南东映碳材料科技有限公司 沥青基高性能碳材料湖南省工程研究中心 长沙 410006
Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage
ZHANG Peng1, HUANG Dong1,2, ZHANG Fuquan1(), YE Chong1,2, WU Xiao1,2, WU Huang1
1.College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
2.Hunan Province Engineering Research Center for High Performance Pitch-based Carbon Materials, Hunan Toyi Carbon Material Technology Co. Ltd., Changsha 410006, China
引用本文:

张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
Peng ZHANG, Dong HUANG, Fuquan ZHANG, Chong YE, Xiao WU, Huang WU. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. Chinese Journal of Materials Research, 2022, 36(8): 579-590.

全文: PDF(6834 KB)   HTML
摘要: 

以不同石墨化度的中间相沥青基碳纤维为基底磁控溅射构筑Cf/Al界面,研究了不同石墨化度Cf/Al界面微观结构的演变,并与聚丙烯腈碳纤维比较揭示了Cf/Al界面的损伤机制。结果表明:随着石墨化处理温度的提高中间相沥青基碳纤维的石墨微晶尺寸增大、取向度和石墨化度提高,Cf/Al界面的反应程度降低和碳纤维损伤减少。不同石墨化度Cf/Al界面的损伤决定于初始缺陷的数量和后续裂纹在碳纤维内部的增殖和扩展。在2400℃和2700℃石墨化处理使裂纹更容易在中间相沥青基碳纤维石墨微晶片层间扩展,去除镀层后纤维损伤比聚丙烯腈碳纤维分别高5.19%和3.70%;在3000℃石墨化处理后,化学惰性较大的中间相沥青碳纤维使界面反应产生的缺陷数量大幅度减小,去除镀层后纤维的损伤比聚丙烯腈碳纤维低1.85%。

关键词 复合材料界面损伤磁控溅射Cf/Al界面中间相沥青基碳纤维    
Abstract

Composite of carbon fiber (Cf) with Al-film (Cf/Al) was constructed by magnetron sputtering with mesophase pitch-based carbon fibers of different graphitization degrees as matrix and Al-plate as sputtering target. Then, the microstructure evolution of Cf /Al interface of the prepared composites was investigated, and the damage mechanism of Cf /Al interface was revealed in comparison to that prepared with polyacrylonitrile carbon fiber. The results show: With the increase of graphitization temperature, the size, the degree of orientation and graphitization of graphite micro-crystallites in mesophase asphalt based carbon fiber increased, whilst both of the reaction degree of Cf /Al interface and the damage of carbon fiber reduced. The damage of Cf /Al interface of the composites prepared with Cf of different graphitization degrees depends on the number of initial defects and the propagation of subsequent cracks in the carbon fiber. The graphitization treatment at 2400℃ and 2700℃ could facilitate the crack propagation through graphite micro-lamellas located in between mesophase asphalt-based carbon fibers, however after removing the Al-coating, the fiber damage was 5.19% and 3.70% higher than that of polyacrylonitrile carbon fiber respectively. After graphitization at 3000℃, the mesophase bituminous carbon fiber with higher chemical inertia could reduce the number of defects generated by interfacial reaction, whilst, after removing the Al-coating, the damage of the fiber was 1.85% lower than that of polyacrylonitrile carbon fiber.

Key wordscomposite    interface damage    magnetron sputtering    Cf/Al interface    mesophase pitch-based carbon fiber
收稿日期: 2021-03-15     
ZTFLH:  TB333  
基金资助:国家自然科学基金(52002104);湖南省科技创新建设专项基金(2020RC3075);湖南省科技创新建设专项基金(2019RS2058);湖南省科技创新建设专项基金(2019GK2021);湖南省科技创新建设专项基金(2020GK4029);博士后科学基金(2020M672480)
作者简介: 张鹏,男,1996年生,硕士生
Fiber

Diameter

/μm

Density

/g·cm-3

Tensile strength/GPa
CfMP-24122.111.547
CfMP -27122.152.538
CfMP -30122.212.971
CfPAN71.763.442
表1  碳纤维的性能参数
图1  磁控溅射原理的示意图
图2  碳纤维CfMP-24表面、CfMP-24截面、CfMP-27-表面、CfMP-27截面、CfMP-30表面、CfMP-30截面、CfPAN表面以及CfPAN截面的SEM照片
图3  碳纤维表面和截面的拉曼光谱
图4  碳纤维赤道扫描、子午扫描、方位角扫描以及粉末扫描的XRD谱
Sample2θ(002)/(°)d(002)/nmLc(002)/nmLa(100)/nmg/%Z/(°)
CfMP-2426.080.34138917.20329320.77146030.36163710.87
CfMP-2726.320.33829221.58303231.15918866.3692929.18
CfMP-3026.4010.33731024.2847840.70132477.7854948.67
CfPAN25.180.3533372.243832--35.9
表2  碳纤维石墨微晶结构参数和石墨化度
图5  碳纤维CfMP-24、CfMP-27、CfMP-30以及CfPAN的HRTEM形貌
图6  镀Al碳纤维的微观形貌
图7  镀Al碳纤维热处理后的形貌
图8  碳纤维表面损伤的形貌
FiberHeat treatment temperature/℃Tensile strength/GPaStrength loss percentage/%
Before the coating treatmentAfter the coating removed
CfMP16001.440--
CfMP-2424001.5471.4198.27
CfMP-2727002.5382.3666.78
CfMP-2430002.9712.9351.23
CfPAN-3.4423.3363.08
表3  碳纤维单丝强度的损失率
图9  石墨化度对界面反应活性的影响机制和拉伸断裂过程中碳纤维微观结构对裂纹扩展的影响机制
1 Liu L T, Sun Y. Research progress of fiber-reinforced aluminum matrix composites [J]. Alum. Fabricat., 2008, (5): 9
1 刘连涛, 孙 勇. 纤维增强铝基复合材料研究进展 [J]. 铝加工, 2008, (5): 9
2 Sun D W, Zhang G Y, Zhang Q X, et al. Application of graphite fiber reinforced aluminum matrix composite to body tube structure in space remote sensor [J]. Opt. Precis. Eng., 2009, 17: 368
2 孙德伟, 张广玉, 张其馨 等. 石墨纤维增强铝基复合材料在空间遥感器镜筒结构中的应用 [J]. 光学 精密工程, 2009, 17: 368
3 Zhang D, Zhang G D, Li Z Q. The current state and trend of metal matrix composites [J]. Mater. China, 2010, 29(4): 1
3 张 荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势 [J]. 中国材料进展, 2010, 29(4): 1
4 Zweben C. Advances in composite materials for thermal management in electronic packaging [J]. JOM, 1998, 50(6): 47
doi: 10.1007/s11837-998-0128-6
5 Li S H, Chao C G. Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites [J]. Metall. Mater. Trans., 2004, 35A: 2153
6 Etter T, Schulz P, Weber M, et al. Aluminium carbide formation in interpenetrating graphite/aluminium composites [J]. Mater. Sci. Eng., 2007, 448A: 1
7 Lee M, Choi Y, Sugio K, et al. Effect of aluminum carbide on thermal conductivity of the unidirectional CF/Al composites fabricated by low pressure infiltration process [J]. Compos. Sci. Technol., 2014, 97: 1
doi: 10.1016/j.compscitech.2014.03.022
8 Liu T T, He X B, Zhang L, et al. Fabrication and thermal conductivity of short graphite fiber/Al composites by vacuum pressure infiltration [J]. J. Compos. Mater., 2014, 48: 2207
doi: 10.1177/0021998313495750
9 Rams J, Ureña A, Escalera M D, et al. Electroless nickel coated short carbon fibres in aluminium matrix composites [J]. Composites, 2007, 38A: 566
10 Chen X W, Qu Y D, Li G L, et al. Effect of matrix alloy elements on microstructure and properties of carbon fiber reinforced aluminum composites [J]. Foundr. Technol., 2018, 39: 1885
10 陈兴旺, 曲迎东, 李广龙 等. 基体合金元素对碳纤维增强铝基复合材料组织与性能的影响 [J]. 铸造技术, 2018, 39: 1885
11 Shuai T T, Lu B P, Yu H, et al. Fabrication process of laminated woven fiber reinforced aluminum matrix composite by hot pressing diffusion [J]. Speci. Cast. Nonferr. Alloys, 2015, 35: 84
11 帅甜田, 卢百平, 余 欢 等. 热压扩散法制备层压编织Cf/Al复合材料工艺研究 [J]. 特种铸造及有色合金, 2015, 35: 84
12 Yang S L, Zhuo Y, Yin X F, et al. The interfacial microstructure of CF/Al composites [J]. J. Mater. Eng., 2001, (7): 19
12 杨盛良, 卓 钺, 尹新方 等. 碳纤维增强铝复合材料的界面微观结构 [J]. 材料工程, 2001, (7): 19
13 Zhao C Z. Correlation between interface reaction and properties of carbon and graphite fibre reinforced aluminium composites [J]. Acta Aeronaut. Astronaut. Sin., 1985, 6: 267
13 赵昌正. 碳纤维和石墨纤维增强铝复合材料界面反应与性能的关系 [J]. 航空学报, 1985, 6: 267
14 Gao F G, Chi W D, Zhang H X, et al. Development survey and prospect of mesophase pitch-based carbon fiber [J]. Hi-Tech Fiber Appl., 2015, 40(5): 33
14 高峰阁, 迟卫东, 张鸿翔 等. 国内外MPCF发展概况与展望 [J]. 高科技纤维与应用, 2015, 40(5): 33
15 Huang X S. Fabrication and properties of carbon fibers [J]. Materials, 2009, 2: 2369
doi: 10.3390/ma2042369
16 Frank E, Buchmeiser M R. Carbon fibers [A]. Kobayashi S, Müllen K. Encyclopedia of Polymeric Nanomaterials [C]. Berlin, Heidelberg: Springer, 2014: 306
17 Johnson D J. Structure-property relationships in carbon fibers [J]. J. Phys., 1987, 20D: 286
18 Suzuki T, Umehara H. Pitch-based carbon fiber microstructure and texture and compatibility with aluminum coated using chemical vapor deposition [J]. Carbon, 1999, 37: 47
doi: 10.1016/S0008-6223(98)00186-9
19 Ma Z K, Liu L, Liu J. Effect of spinning process on the oriented structure and thermal conductivity of the mesophase pitch-based graphite fiber [J]. J. Inor. Mater., 2010, 25: 989
19 马兆昆, 刘 朗, 刘 杰. 纺丝工艺对带形中间相沥青基石墨纤维取向结构及热导率的影响 [J]. 无机材料学报, 2010, 25: 989
20 Qin X Y, Lu Y G, Xiao H, et al. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers [J]. Carbon, 2012, 50: 4459
doi: 10.1016/j.carbon.2012.05.024
21 Pei R S, Chen G Q, Wang Y P, et al. Effect of interfacial microstructure on the thermal-mechanical properties of mesophase pitch-based carbon fiber reinforced aluminum composites [J]. J. Alloys Compd., 2018, 756: 8
doi: 10.1016/j.jallcom.2018.04.330
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.