材料研究学报, 2022, 36(8): 591-596 DOI: 10.11901/1005.3093.2021.375

研究论文

自供能Ag/SnSe纳米管红外探测器的制备和性能研究

方向明1, 任帅2, 容萍2, 刘烁2, 高世勇,2

1.太原学院材料与化学工程系 太原 030032

2.哈尔滨工业大学材料科学与工程学院 哈尔滨 150001

Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes

FANG Xiangming1, REN Shuai2, RONG Ping2, LIU Shuo2, GAO Shiyong,2

1.Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China

2.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

通讯作者: 高世勇,副教授,gaoshiyong@hit.edu,研究方向为宽带隙半导体材料与器件

责任编辑: 吴岩

收稿日期: 2021-06-24   修回日期: 2021-08-01  

基金资助: 国家重点研发计划(2019YFA0705201)
黑龙江省自然科学基金(LH2020E033)

Corresponding authors: GAO Shiyong, Tel:(0451)86417763, E-mail:gaoshiyong@hit.edu.cn

Received: 2021-06-24   Revised: 2021-08-01  

Fund supported: National Key Research and Development Program of China(2019YFA0705201)
Natural Science Foundation of Heilongjiang Province(LH2020E033)

作者简介 About authors

方向明,男,1982年生,副教授

摘要

采用光沉积法在SnSe纳米管表面沉积Ag纳米粒子,在室温下制备了Ag修饰的SnSe纳米管(Ag/SnSe),通过SEM、EDS、TEM和XRD等手段表征其表面形貌、元素组成和晶体结构。随后,将Ag/SnSe纳米管旋涂在FTO导电面作为工作电极并以Pt电极为对电极组装了Ag/SnSe纳米管红外探测器,使用830 nm的光作为红外模拟光源研究了红外探测性能。结果表明,Ag/SnSe纳米管的平均直径约为100~200 nm,Ag纳米颗粒负载在SnSe纳米管表面。与SnSe纳米管红外探测器相比,Ag修饰的SnSe纳米管红外探测器的最大光电流密度提高到120 nA/cm2,上升时间和下降时间分别缩短到0.109和0.086 s。同时,Ag修饰的SnSe纳米管红外探测器的稳定性较高,可循环使用。

关键词: 无机非金属材料; SnSe纳米管; 光沉积法; Ag纳米粒子; 红外探测器

Abstract

Ag-modified SnSe nanotubes (Ag/SnSe NTs) were fabricated by light irradiation assissted deposition process, therewith Ag nanoparticles were deposited on the surface of SnSe NTs at room temperature. The morphology, chemical composition and crystal structure of the prepared Ag/SnSe NTs were characterized by SEM, EDS, TEM and XRD. The results show that the average diameter of SnSe NTs covered with Ag nanoparticles is approximately 100~200 nm. In addition, the infrared detector based on Ag/SnSe NTs (IRPD) was assembled with Ag/SnSe NTs spin-coated on the conductive surface of FTO as the working electrode and the Pt electrode as the counter electrode. Afterwards, the infrared detection performance of Ag/SnSe NTs IRPD was further investigated by adopting infrared light of 830 nm as the simulated light source. Compared with the SnSe NTs IRPD, the maximum photocurrent density of Ag/SnSe NTs IRPD achieves 120 nA/cm2, simultaneously the rise time and decay time are declined to 0.109 s and 0.086 s, respectively, demonstrating the characteristics of good stability and repeatability.

Keywords: inorganic non-metallic materials; SnSe nanotubes; light deposition method; Ag nanoparticles; infrared detector

PDF (1505KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596 DOI:10.11901/1005.3093.2021.375

FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. Chinese Journal of Materials Research, 2022, 36(8): 591-596 DOI:10.11901/1005.3093.2021.375

红外探测器可用于军事探测、航空航天、生命科学和环境监测等领域[1~4]。基于窄带隙半导体的红外探测器,由于其结构简单、性能稳定和易于制备,已经成为当前的研究热点[5,6]。SnSe是一种重要的窄带隙半导体材料,其具有电导率和化学稳定性高和成本较低等优点,是制造红外探测器的理想材料[7~9]。但是,光照后SnSe的电子-空穴对复合极快,使其载流子浓度降低,严重影响SnSe红外探测器的效率[10,11]。抑制光生载流子复合提高单一半导体光电探测效率的方法,有元素掺杂、构建半导体异质结和贵金属修饰[12~15]。其中,用贵金属纳米粒子修饰半导体,具有成本低、促进电子-空穴对分离快且操作简单的优点。

与其它贵金属(Au、Pt、Pd)相比,Ag具备无毒且价格较低、易制备、化学性质稳定等优点[16,17]。同时,光沉积法成本较低和工艺简单,通过调整沉积时间、光强和前驱体溶液配比即可在室温下实现Ag纳米粒子的可控制备[18~20]。目前,关于用金属Ag修饰半导体以加快电子-空穴对分离已有大量的研究工作。Liu等[21]通过将化学气相沉积与热蒸发相结合制备了Ag修饰ZnO阵列,能有效分离电子-空穴对。且与未修饰ZnO相比,其紫外探测性能显著提高。Devi等[22]合成了一种Ag修饰CeO2纳米棒光电探测器,Ag纳米粒子修饰能显著抑制CeO2纳米棒电子-空穴对的复合并提升其捕获电子的能力。Joshna等[23]制备的Ag修饰TiO2纳米管(TiO2 NTs),金属Ag显著减少了电子-空穴对的复合,Ag纳米粒子修饰的TiO2 NTs的光电流是纯TiO2 NTs的120倍。同时,在各种SnSe纳米结构材料中一维SnSe纳米管具有高电子传输效率、几何异向性和量子限域效应,更有利于提高红外探测性能[24~26]。因此,使用Ag修饰的SnSe纳米管有望制备出高性能红外探测器。本文用光沉积法在SnSe纳米管表面修饰金属Ag纳米粒子,在室温下合成Ag修饰SnSe(Ag/SnSe)纳米管并以Pt为对电极组装红外探测器,研究其在模拟红外光(830 nm)照射下的红外探测性能、光响应速度和循环稳定性,并讨论其机理。

1 实验方法

1.1 Ag/SnSe纳米管的制备

以Se纳米线为模板,用溶液法制备SnSe纳米管[26],然后将0.02 g的SnSe纳米管加到30 mL的0.05 mol/L 硝酸银溶液中并磁力搅拌使其分散均匀;用波长为365 nm的紫外光照射溶液,光沉积15 min后自然沉降5 min。然后将得到的样品用去离子水清洗并离心分离出Ag/SnSe纳米管,重复2次后将其在烘箱中低温干燥。

1.2 Ag/SnSe纳米管红外探测器的制备

将制备出的Ag/SnSe纳米管分散在无水乙醇中,然后旋涂到FTO导电面后烘干,将这一过程重复三次,获得Ag/SnSe纳米管薄膜。以负载在FTO表面的Ag/SnSe纳米管薄膜为工作电极,以镀Pt的FTO为对电极,通过热封膜将工作电极和对电极相连接,中间注入聚硫电解质溶液后密封。

1.3 性能表征

使用扫描电子显微镜(SEM,Hitachi SU-70)及附带的X射线能谱仪(EDS)表征样品形貌和化学成分。用透射电子显微镜(TEM,FEI,Tecnai G2 F20)和高分辨透射电子显微镜(HRTEM)观测样品的形貌。用X射线衍射仪(XRD,Bruker D8 Advance)表征样品的晶体结构。将组装好的Ag/SnSe纳米管探测器与Keithley 2400数字源表连接,使用830 nm的光作为模拟红外光源,测试其红外探测性能。

2 结果与讨论

图1a给出了SnSe纳米管的SEM照片。可以观察到,SnSe纳米管生长均匀且其外表面包覆着细小的纳米片。从高倍照片(图1b)可见SnSe纳米管的管口有明显的开口,表明是中空结构。光沉积Ag纳米粒子(图1c)的Ag/SnSe纳米管形貌没有明显的变化,整体为鱼鳞状结构,直径为100~200 nm。图1d给出了Ag/SnSe纳米管的高倍SEM照片,可见纳米管的表面粗糙,包覆着分布紧密的鱼鳞状纳米薄片。但是,在纳米管表面没有明显的Ag纳米颗粒,其原因可能是SnSe纳米管表面较粗糙且Ag纳米粒子的尺寸较小。

图1

图1   SnSe纳米管和Ag/SnSe纳米管的SEM照片

Fig.1   SEM images of SnSe nanotubes (a, b) and Ag/SnSe nanotubes (c, d)


用EDS分析Ag/SnSe纳米管的元素组成,结果如图2所示。图中有源于SnSe纳米管的Se和Sn元素的特征峰,最强峰来自测试支撑Si衬底(用于样品形貌观察)。在2.99 keV处出现了Ag元素的特征峰,表明在SnSe纳米管表面沉积了Ag纳米粒子。

图2

图2   Ag/SnSe纳米管的EDS能谱

Fig.2   EDS pattern of Ag/SnSe nanotube


用TEM进一步表征了Ag/SnSe纳米管的微观结构,结果如图3a所示。从图3a中的单根Ag/SnSe纳米管TEM照片可观察到纳米管表面包裹了大量层次分明的鱼鳞状纳米片,边缘两侧比中间颜色更深,表明其为中空管状结构。同时,还明显可见Ag纳米颗粒均匀地负载在鱼鳞状纳米片表面。Ag/SnSe纳米管的高分辨TEM照片,如图3b所示。在照片中观察到的0.208 nm的晶格条纹对应SnSe的(141)晶面,而0.123 nm的晶格条纹则与Ag(311)晶面对应[27]

图3

图3   Ag/SnSe纳米管的TEM和高分辨TEM照片

Fig.3   TEM (a) and high resolution TEM (b) images of Ag/SnSe nanotube


图4给出了样品的XRD谱。从图4中,位于2θ为26.5°、29.4°、30.4°、31°和51°处的衍射峰对应于斜方晶系SnSe(JCPDS No.65-3767)的(021)、(101)、(111)、(040)和(122)晶面。在33°附近的衍射峰源于测试支撑Si衬底的(200)晶面。在38.1°和44.2°处的衍射峰较好地匹配立方晶系Ag(JCPDS No.04-0783)的(111)和(200)晶面[28],进一步证明Ag纳米粒子成功地沉积在SnSe表面。

图4

图4   Ag/SnSe纳米管的XRD谱

Fig.4   XRD pattern of Ag/SnSe nanotubes


在无外加偏压条件下用830 nm的光作为红外光模拟光源,开启红外光照射10 s后关闭红外光10 s作为一个测试周期,研究了Ag/SnSe纳米管探测器对红外光的探测性能,其结果如图5所示。在无红外光照射时Ag/SnSe纳米管红外探测器为静默状态,光电流密度几乎为零;开启红外光后器件瞬间产生光电流并快速攀升至最大值120 nA/cm2,然后逐渐稳定。关闭红外光后,光电流迅速衰减并恢复到初始状态。经过6次开关循环,电流密度曲线没有明显的变化,这表明,所组装的探测器具备高电流密度和较好的耐用性。同时,器件能在无偏压条件下稳定工作,表明其具有自供能特性。在相同的实验条件下测试了SnSe纳米管红外探测器的性能,其光电流密度只有46 nA/cm2,比Ag/SnSe纳米管红外探测器的光电流密度降低了61%。这表明,Ag纳米粒子修饰明显提高了SnSe纳米管探测器对红外光的探测性能。

图5

图5   SnSe纳米管和Ag/SnSe纳米管红外探测器在开/关红外光照射下的电流密度曲线

Fig.5   Time dependent current response of the SnSe and Ag/SnSe nanotubes infrared photodetector (IRPD) measured under on/off of IR light illumination


探测器的响应时间,是评价其探测性能的一个关键参数。光电流从初始值升至峰值的63%所用的时间定义为上升时间,光电流从峰值降至峰值的37%所用的时间定义为下降时间[29]图6给出了器件的单周期光电响应特征曲线。从图6可见,SnSe纳米管红外探测器的上升时间和下降时间分别为0.174和0.349 s。用Ag纳米粒子修饰后,上升时间和下降时间分别缩短至0.109和0.086 s。这表明,Ag纳米粒子修饰SnSe纳米管不仅增强了SnSe纳米管探测器的光电流,也提高了对红外光的响应速度。

图6

图6   SnSe纳米管和Ag/SnSe纳米管红外探测器单个周期的光电响应特征曲线

Fig.6   Single-cycle photocurrent response of the IRPD based on SnSe and Ag/SnSe nanotubes


Ag/SnSe纳米管红外探测器的机理如图7所示。Ag/SnSe纳米管独特的鱼鳞状中空结构和大比表面积,显著提高了对红外光的吸收能力,进而提高了对红外光的利用效率。用红外光照射时SnSe纳米管吸收的光子能量高于其带隙,因此光生电子激发后从价带跃迁至导带并在价带留下空穴。电子-空穴对的快速复合严重影响了SnSe纳米管探测器的效率。而在SnSe表面负载Ag纳米粒子后,金属Ag与SnSe纳米管表面发生肖特基接触产生肖特基势垒,进而出现内建电场。在光生电子从SnSe表面迁至单质Ag的过程中促进载流子的分离,抑制了光生电子-空穴对的复合。同时,随着SnSe纳米管和电解液间电子-空穴对的分离[30],电子通过外部电路迁移至Pt电极并与电解液中的S x2-反应生成S2-和S x-12-。生成的S2-在电解液中扩散至SnSe纳米管与其表面的空穴反应生成S单质,S与S x-12-进一步反应生成S x2-[31]。S x2-和S2-没有被消耗而持续循环,使光生电子通过外电路产生电流。因此,Ag/SnSe纳米管红外探测器能实现对红外光的自供能探测。关闭红外光后没有光生电子产生,Ag/SnSe纳米管红外探测器迅速恢复到初始状态。

图7

图7   Ag/SnSe纳米管红外探测器的原理

Fig.7   Schematic illustration of the possible IR detection mechanism of the Ag/SnSe nanotubes IRPD


3 结论

用光沉积法将Ag纳米颗粒沉积在鱼鳞状中空SnSe纳米管表面,在室温下制备Ag/SnSe纳米管。Ag/SnSe纳米管表面粗糙致密,在表面能观察到微小的Ag纳米粒子。与SnSe纳米管探测器相比,用Ag修饰的SnSe纳米管红外探测器的光电流密度提高了约160%(达到120 nA/cm2)、光响应速度也明显改善、上升时间缩短至0.109 s、下降时间缩短至0.086 s,且具有较高的循环稳定性。

参考文献

Zeng Y K, Liu M D, Huang Y Q.

Infrared detector array with PLZT thick films on silicon-based microstructure tunnels

[J]. Chin. J. Mater. Res., 2004, 18: 308

[本文引用: 1]

曾亦可, 刘梅冬, 黄焱球.

Si基微绝热结构PLZT厚膜红外探测器阵列

[J]. 材料研究学报, 2004, 18: 308

[本文引用: 1]

Li A Z, Zheng Y L, Lin C.

MBE grown antimonide mid-infrared lasers and photodetectors

[J]. Chin. J. Mater. Res., 2001, 15: 29

李爱珍, 郑燕兰, 林 春.

用分子束外延制备红外锑化物激光器和探测器材料

[J]. 材料研究学报, 2001, 15: 29

用固态源分子束外延方法, 在GaSb衬底上成功地生长出四元系III-V族锑化物单层、多量子阱和激光器、探测器结构材料, 并用这些材料制备了2μm波段室温准连续脊波导AlGaAsSb/InGaAsSb多量子阱.

Rogalski A.

Infrared detectors: an overview

[J]. Infrared Phys. Technol., 2002, 43: 187

DOI      URL    

Zhang M, Cao M S, Shu J C, et al.

Electromagnetic absorber converting radiation for multifunction

[J]. Mater. Sci. Eng., 2021, 145R: 100627

[本文引用: 1]

Mi L F, Wang H, Zhang Y, et al.

High performance visible-near-infrared PbS-quantum-dots/indium Schottky diodes for photodetectors

[J]. Nanotechnology, 2017, 28: 055202

[本文引用: 1]

Luo B, Zhao J, Cheng B C, et al.

A surface state-controlled, high-performance, self-powered photovoltaic detector based on an individual SnS nanorod with a symmetrical electrode structure

[J]. J. Mater. Chem. C, 2018, 6: 9071

DOI      URL     [本文引用: 1]

Xu H Y, Hao L Z, Liu H, et al.

Flexible SnSe photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect

[J]. ACS Appl. Mater. Interfaces, 2020, 12: 35250

DOI      URL     [本文引用: 1]

Yao J D, Zheng Z Q, Yang G W.

All‐layered 2D optoelectronics: a high-performance UV-vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes

[J]. Adv. Funct. Mater., 2017, 27: 1701823

DOI      URL    

Murali K, Majumdar K.

Self-powered, highly sensitive, high-speed photodetection using ITO/WSe2/SnSe2 vertical heterojunction

[J]. IEEE Trans. Electron Dev., 2018, 65: 4141

[本文引用: 1]

Qiao H, Huang Z Y, Ren X H, et al.

Photoresponse improvement in liquid-exfoliated SnSe nanosheets by reduced graphene oxide hybridization

[J]. J. Mater. Sci., 2018, 53: 4371

DOI      URL     [本文引用: 1]

Xue H, Dai Y Y, Kim W, et al.

High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure

[J]. Nanoscale, 2019, 11: 3240

DOI      URL     [本文引用: 1]

Shankar K, Tep K C, Mor G K, et al.

An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties

[J]. J. Phys. D: Appl. Phys., 2006, 39: 2361

DOI      URL     [本文引用: 1]

Zhao H M, Chen Y, Quan X, et al.

Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation

[J]. Chin. Sci. Bull., 2007, 52: 1456

DOI      URL    

Hao L Z, Wang Z G, Xu H Y, et al.

2D SnSe/Si heterojunction for self-driven broadband photodetectors

[J]. 2D Mater., 2019, 6: 034004

Yang L X, He D M, Cai Q Y, et al.

Fabrication and catalytic properties of Co-Ag-Pt nanoparticle-decorated titania nanotube arrays

[J]. J. Phys. Chem. C, 2007, 111: 8214

DOI      URL     [本文引用: 1]

Georgekutty R, Seery M K, Pillai S C.

A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism

[J]. J. Phys. Chem. C, 2008, 112: 13563

DOI      URL     [本文引用: 1]

Zeng Y Y, Pan X H, Lu B, et al.

Fabrication of flexible self-powered UV detectors based on ZnO nanowires and the enhancement by the decoration of Ag nanoparticles

[J]. RSC Adv., 2016, 6: 31316

DOI      URL     [本文引用: 1]

Chan S C, Barteau M A.

Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition

[J]. Langmuir, 2005, 21: 5588

PMID      [本文引用: 1]

Photodeposition of Ag nanoparticles on commercial TiO2 particles and nanoparticles was performed in order to provide direct visualization of the spatial distribution of photoactive sites on sub-micrometer-scale and nanoscale TiO2 particle surfaces and to create materials for potential catalytic applications. HRTEM (high-resolution transmission electron microscopy) and HAADF-STEM (high-angle annular dark-field scanning transmission electron microscopy) were used to characterize these materials. The size and spatial distributions of the Ag nanoparticles on the commercial TiO2 were not uniform; the concentration of Ag was higher on grain boundaries and at the edges of these submicrometer particles. In the case of TiO2 nanoparticles, the size distribution of the Ag nanoparticles deposited was relatively uniform and independent of irradiation time and photon energy. The amount of Ag deposited on TiO2 nanoparticles was at least 6 times higher than that on the commercial samples for comparable irradiation conditions. Compared to the case of Ag photodeposition, the difference in the amount of Au photodeposited on TiO2 particles and nanoparticles was even greater, especially at low precursor concentrations. Photodeposition on TiO2 nanoparticles is suggested as a potential method for the preparation of Au/TiO2 catalysts, as loadings in excess of 10 wt % of uniform 1 nm metal particles were achieved in this work.

Taing J, Cheng M H, Hemminger J C.

Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG

[J]. ACS Nano, 2011, 5: 6325

DOI      URL    

He J X, Yang P J, Sato H, et al.

Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets

[J]. J. Electroanal. Chem., 2004, 566: 227

DOI      URL     [本文引用: 1]

Liu Y, Zhang X H, Su J, et al.

Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector

[J]. Opt. Express, 2014, 22: 30148

DOI      URL     [本文引用: 1]

Devi N M, Singh N K.

Plasmon-induced Ag decorated CeO2 nanorod array for photodetector application

[J]. Nanotechnology, 2020, 31: 225203

DOI      URL     [本文引用: 1]

Joshna P, Hazra A, Chappanda K N, et al.

Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array

[J]. Semicond. Sci. Technol., 2020, 35: 015001

[本文引用: 1]

Hao L Z, Du Y J, Wang Z G, et al.

Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity

[J]. Nanoscale, 2020, 12: 7358

DOI      URL     [本文引用: 1]

Pawbake A S, Jadkar S R, Late D J.

High performance humidity sensor and photodetector based on SnSe nanorods

[J]. Mater. Res. Express, 2016, 3: 105038

DOI      URL    

Ren S, Liu S, Gao S Y, et al.

A facile solution synthesis of scaly-like hollow SnSe nanotubes for self-powered infrared sensor

[J]. J. Alloys Compd., 2021, 879: 160446

DOI      URL     [本文引用: 2]

Bai H J, Yang B S, Chai C J, et al.

Green synthesis of silver nanoparticles using Rhodobacter sphaeroides

[J]. World J. Microbiol. Biotechnol., 2011, 27: 2723

DOI      URL     [本文引用: 1]

Gatemala H, Tongsakul D, Naranaruemol S, et al.

Synthesis of silver microfibers with ultrahigh aspect ratio by galvanic replacement reaction

[J]. Mater. Chem. Phys., 2019, 237: 121872

DOI      URL     [本文引用: 1]

Zhou J Y, Chen L L, Wang Y Q, et al.

An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors

[J]. Nanoscale, 2016, 8: 50

DOI      URL     [本文引用: 1]

Xie Y R, Wei L, Li Q H, et al.

High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays

[J]. Nanotechnology, 2014, 25: 075202

[本文引用: 1]

McDaniel H, Fuke N, Makarov N S, et al.

An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells

[J]. Nat. Commun., 2013, 4: 2887

DOI      PMID     

Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2-x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and device design improvements studied, use of a methanol-based polysulfide electrolyte results in a particularly dramatic enhancement in photocurrent and reduced series resistance. Despite the high vapour pressure of methanol, the solar cells are stable for months under ambient conditions, which is much longer than any previously reported quantum dot sensitized solar cell. This study demonstrates the large potential of CuInSexS2-x quantum dots as active materials for the realization of low-cost, robust and efficient photovoltaics as well as a platform for investigating various advanced concepts derived from the unique physics of the nanoscale size regime.

/