Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (10): 760-768    DOI: 10.11901/1005.3093.2021.302
  研究论文 本期目录 | 过刊浏览 |
Er3+ 掺杂对Bi3Ti1.5W0.5O9-Bi4Ti3O12 共生无铅压电陶瓷性能的影响
曾仁芬, 江向平(), 陈超, 黄枭坤, 聂鑫, 叶芬
景德镇陶瓷大学材料科学与工程学院 江西省先进陶瓷材料重点实验室 景德镇 333403
Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics
ZENG Renfen, JIANG Xiangping(), CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen
Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
引用本文:

曾仁芬, 江向平, 陈超, 黄枭坤, 聂鑫, 叶芬. Er3+ 掺杂对Bi3Ti1.5W0.5O9-Bi4Ti3O12 共生无铅压电陶瓷性能的影响[J]. 材料研究学报, 2022, 36(10): 760-768.
Renfen ZENG, Xiangping JIANG, Chao CHEN, Xiaokun HUANG, Xin NIE, Fen YE. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. Chinese Journal of Materials Research, 2022, 36(10): 760-768.

全文: PDF(4082 KB)   HTML
摘要: 

用传统固相法制备了Bi7-x Er x Ti4.5W0.5O21(BTW-BIT-xEr3+,x=0.05、0.10、0.15、0.25、0.35)共生铋层结构无铅压电陶瓷,用BTW-BIT-xEr3+的XRD和SEM表征其相结构和形貌,研究了Er3+掺杂对其上转换发光性能和电学性能的影响。结果表明:在这种陶瓷中生成了铋层状结构的单一晶相。在980 nm光波激发下所有组分的上转换荧光谱中都能清晰地观察到两个绿光和一个红光发射峰,峰的中心分别位于532 nm、548 nm和660 nm处。改变掺杂Er3+离子浓度可调节其强度比。根据BTW-BIT-0.15Er3+样品在532 nm和548 nm绿光的光强比拟合了290~440 K的温度灵敏度,结果表明440 K处的灵敏度最大为0.0023 K-1。Er3+离子替代BTW-BIT-xEr3+伪钙钛矿层的Bi3+使氧空位浓度的降低,降低了高温介电损耗,提高了激活能和压电常数。BTW-BIT-0.15Er3+陶瓷的综合电学性能最优,分别为d33=14 pC/N、Tc=697℃,tanδ=0.53%、Qm=2055。这种陶瓷材料具有最优的发光性能和良好的热稳定性。

关键词 无机非金属材料共生陶瓷铋层结构上转换发光电学性能    
Abstract

Bi7-x Er x Ti4.5W0.5O21(BTW-BIT-xEr3+, x=0.05, 0.10, 0.15, 0.25, 0.35) lead-free piezoelectric ceramics with intergrowth bismuth-layered structure was fabricated via solid phase synthesizing method. While the effect of Er3+-doping on their up conversion fluorescence and electrical properties was systemically investigated. The results of XRD and SEM reveal the formation of a single phase with bismuth-layered structure of Bi7-x Er x Ti4.5W0.5O21 (BTW-BIT-xEr3+(x=0.05, 0.10, 0.15, 0.25, 0.35)). Three emissions of two green and one red were observed for all the BTW-BIT-xEr3+ products with chemical compositions within the desired range under 980nm light excitation. The three emissions centered at 532 nm, 548 nm and 660 nm, and the intensity ratio of red to green emissions could be adjusted by changing the doping amount of Er3+ ions. According to the intensity ratio of 532 nm to 548 nm for BTW-BIT-0.15Er3+ in the range of 290~440 K, the temperature sensitivity was fitted and showed the maximum temperature sensitivity of 0.0023 K-1 at 440 K. The dielectric and impedance of BTW-BIT-xEr3+ ceramics were analyzed. The results show that Er3+ ions replaced Bi3+ ions in the pseudo-perovskite layer, therewith the oxygen vacancy concentration decreases, which may be accounted for the decrease of high-temperature dielectric loss, the raising of activation energy and the enhancement of piezoelectric constant. The BTW-BIT-0.15Er3+ ceramic possesses the comprehensive properties: d33=14pC/N, Tc=697℃ and tanδ=0.53%, as well as the optimal photoluminescence and good thermal stability.

Key wordsinorganic nonmetallic materials    intergrowth ceramics    bismuth-layered structure    up-conversion luminescence    electrical properties
收稿日期: 2021-05-12     
ZTFLH:  TQ174  
基金资助:国家自然科学基金(51862016);国家自然科学基金(52062018);国家自然科学基金(51762024);江西省自然科学基金(20192BAB206008);江西省自然科学基金(20192BAB212002);江西省教育厅科技项目(GJJ190712);江西省教育厅科技项目(GJJ201331)
图1  BTW-BIT-xEr3+陶瓷在室温下的XRD图谱和BTW-BIT-xEr3+陶瓷在衍射角2θ在29°~30.5°范围的放大图
图2  BTW-BIT样品的XRD的精修图和BTW-BIT-xEr3+样品精修后的晶格参数(a、b、c、V)及晶胞体积
图3  BTW-BIT-xEr3+样品热腐蚀表面的SEM照片
图4  BTW-BIT-xEr3+(x=0.05、0.10、0.15、0.25、0.35)样品在常温下上转换荧光发光谱
图5  Er3+离子光致发光机理能级图
图6  BTW-BIT-xEr3+(x=0.05、0.10、0.15、0.25、0.35)样品的绿光548 nm和红光660 nm的强度比值,插图显示BTW-BIT-xEr3+陶瓷的CIE色度坐标
图7  BTW-BIT-xEr3+(x=0.05、0.10、0.15、0.25、0.35)样品在温度为290~440 K范围内上转换发光谱和FIR随温度的变化,其插图为灵敏度与温度的关系
图8  BTW-BIT-xEr3+样品的介电温谱、介电常数的放大图和介电损耗的放大图
x/molTc/℃d33/pC·N-1εrεm

tanδ

/%

Qm
0.006896.9245.914960.90366
0.056919.9243.713950.88404
0.1069910.3225.412420.731500
0.1569714.0221.512200.532055
0.2569112.1221.210050.431676
0.356918.6214.59900.41540
表1  BTW-BIT-xEr3+样品在常温下测量的电学性能
图9  BTW-BIT-xEr3+样品电阻抗与频率的关系
图10  BTW-BIT-xEr3+陶瓷样品阻抗的Cole-Cole图
图11  BTW-BIT-xEr3+ 样品的退极化曲线
1 Wei T, Zhao C Z, Li C P, et al. Photoluminescence and ferroelectric properties in Eu doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectric ceramics [J]. J. Alloys Compd., 2013, 577: 728
doi: 10.1016/j.jallcom.2013.06.186
2 Marzouk M A, Elkashef I M, Elbatal H A. Luminescent, semiconducting, thermal, and structural performance of Ho3+-doped lithium borate glasses with CaF2 or MgF2 [J]. Appl. Phys., 2019, 125A: 97
3 Zheng K Z, Liu Z Y, Lv C J, et al. Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ co-doped NaLuF4 microcrystals [J]. J. Mater. Chem., 2013, 1C: 5502
4 Du P, Luo L H, Li W P, et al. Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic [J]. Appl. Phys. Lett., 2014, 104: 152902
doi: 10.1063/1.4871378
5 Dong B, Cao B S, He Y Y, et al. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare‐earth oxides [J]. Adv. Mater., 2012, 24: 1987
doi: 10.1002/adma.201200431
6 Qian L P, Zhou L H, Too H P, et al. Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells [J]. J. Nano-part. Res., 2011, 13: 499
7 Trupke T, Green M A, Würfel P. Improving solar cell efficiencies by down-conversion of high-energy photons [J]. J. Appl. Phys., 2002, 92: 1668
doi: 10.1063/1.1492021
8 Wang H Q, Batentschuk M, Osvet A, et al. Rare‐earth ion doped up‐conversion materials for photovoltaic applications [J]. Adv. Mater., 2011, 23: 2675
doi: 10.1002/adma.201100511
9 Ye H Y, Zhou Q H, Niu X H, et al. High-temperature ferroelectricity and photoluminescence in a hybrid organic-inorganic compound: (3-Pyrrolinium)MnCl3 [J]. J. Am. Chem. Soc., 2015, 137: 13148
doi: 10.1021/jacs.5b08290
10 Bai G X, Tsang M K, Hao J H. Tuning the luminescence of phosphors: beyond conventional chemical method [J]. Adv. Opt. Mater., 2015, 3: 431
doi: 10.1002/adom.201400375
11 Zhou H, Chen X M, Wu G H, et al. Significantly enhanced red photoluminescence properties of nanocomposite films composed of a ferroelectric Bi3.6Eu0.4Ti3O12 matrix and highly c-axis-oriented ZnO nanorods on Si substrates prepared by a hybrid chemical solution method [J]. J. Am. Chem. Soc., 2010, 132: 1790
doi: 10.1021/ja910388f
12 Yu L, Hao J G, Xu Z J, et al. Ho‐doped SrBi2Nb2O9 multifunctional ceramics with bright green emission and good electrical properties [J]. Phys. Status Solidi, 2017, 214A: 1700276
13 Zou H, Hui X W, Wang X S, et al. Luminescent, dielectric, and ferroelectric properties of Pr doped Bi7Ti4NbO21 multifunctional ceramics [J]. J. Appl. Phys., 2013, 114: 223103
doi: 10.1063/1.4842775
14 Wei T, Li C P, Zhou Q J, et al. Upconversion luminescence and ferroelectric properties of Er3+ doped Bi4Ti3O12-SrBi4Ti4O15 [J]. Mater. Lett., 2014, 118: 92
doi: 10.1016/j.matlet.2013.12.054
15 Jiang X G, Jiang X P, Chen C, et al. Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics [J]. J. Am. Ceram. Soc., 2016, 99: 1332
doi: 10.1111/jace.14115
16 Luo S, Noguchi Y, Miyayama M, et al. Rietveld analysis and dielectric properties of Bi2WO6-Bi4Ti3O12 ferroelectric system [J]. Mater. Res. Bull., 2001, 36: 531
doi: 10.1016/S0025-5408(01)00516-5
17 Zhuang J S, Jiang X P, Chen C, et al. Enhanced piezoelectric properties and low electrical conductivity of Ce-doped Bi7Ti4.5W0.5O21 intergrowth piezoelectric ceramics [J]. Ceram. Int., 2020, 46: 26616
doi: 10.1016/j.ceramint.2020.07.130
18 Wang C M, Wang J F, Mao C L, et al. Enhanced dielectric and piezoelectric properties of aurivillius-type potassium bismuth titanate ceramics by cerium modification [J]. J. Am. Ceram. Soc., 2008, 91: 3094
doi: 10.1111/j.1551-2916.2008.02557.x
19 Wei T, Zhang T B, Ma Y J, et al. Up-conversion photoluminescence and temperature sensing properties of Er3+-doped Bi4Ti3O12 nanoparticles with good water-resistance performance [J]. RSC Adv., 2016, 6: 7643
doi: 10.1039/C5RA24776D
20 Zhang Y, Li J, Chai X N, et al. Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics [J]. J. Appl. Phys., 2017, 121: 124102
doi: 10.1063/1.4979096
21 Bokolia R, Thakur O P, Rai V K, et al. Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12 ferroelectric ceramics [J]. Ceram. Int., 2015, 41: 6055
doi: 10.1016/j.ceramint.2015.01.062
22 Wei Y L, Liu X Y, Chi X N, et al. Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass-ceramics [J]. J. Alloys Compd., 2013, 578: 385
doi: 10.1016/j.jallcom.2013.06.014
23 Wei Y L, Chi X N, Liu X Y, et al. Novel upconversion behavior in Ho3+-doped transparent oxyfluoride glass-ceramics containing NaYbF4 nanocrystals [J]. J. Am. Ceram. Soc., 2013, 96: 2073
doi: 10.1111/jace.12457
24 Tang Y X, Shen Z Y, Du Q X, et al. Enhanced pyroelectric and piezoelectric responses in W/Mn-codoped Bi4Ti3O12 Aurivillius ceramics [J]. J. Eur. Ceram. Soc., 2018, 38: 5348
doi: 10.1016/j.jeurceramsoc.2018.08.025
25 Zou H, Li J, Cao Q F, et al. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing [J]. J. Adv. Dielectr., 2014, 4: 1450028
doi: 10.1142/S2010135X14500283
26 Ji W B, Chu R Q, Xu Z J, et al. Effect of CeO2-doping on properties of SrNa0.5Bi4.5Ti5O18- based high temperature lead-free piezoelectric ceramics [J]. Chin. J. Mater. Res., 2015, 29: 201
26 姬万滨, 初瑞清, 徐志军 等. CeO2掺杂对SrNa0.5Bi4.5Ti5O18高温无铅压电陶瓷性能的影响 [J]. 材料研究学报, 2015, 29: 201
doi: 10.11901/1005.3093.2014.460
27 Jiang Y L, Jiang X P, Chen C, et al. Photoluminescence and electrical properties of Er3+-doped Na0.5Bi4.5Ti4O15—Bi4Ti3O12 inter-growth ferroelectric ceramics [J]. Front. Mater. Sci., 2017, 11: 51
doi: 10.1007/s11706-017-0367-y
28 Luo Y H, Jiang X P, Chen C, et al. Effect of Er3+-doping on electrical and photoluminescence properties of Na0.25K0.25Bi2.5Nb2O9 piezoelectric ceramics [J]. J. Chin. Ceram. Soc., 2016, 44: 1281
28 罗雨涵, 江向平, 陈 超 等. Er3+掺杂对Na0.25K0.25Bi2.5Nb2O9压电陶瓷电学和光学性能的影响 [J]. 硅酸盐学报, 2016, 44: 1281
29 Wei T, Zhao C Z, Zhou Q J, et al. Bright green upconversion emission and enhanced ferroelectric polarization in Sr1-1.5 x Er x Bi2Nb2O9 [J]. Opt. Mater., 2014, 36: 1209
doi: 10.1016/j.optmat.2014.03.001
30 Huang F, Gao Y, Zhou J, et al. Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing [J]. J. Alloys Compd., 2015, 639: 325
doi: 10.1016/j.jallcom.2015.02.228
31 Li C R, Dong B, Li S F, et al. Er3+-Yb3+ co-doped silicate glass for optical temperature sensor [J]. Chem. Phys. Lett., 2007, 443: 426
doi: 10.1016/j.cplett.2007.06.081
32 Wang W, Shan D, Sun J B, et al. Aliovalent B-site modification on three- and four-layer Aurivillius intergrowth [J]. J. Appl. Phys., 2008, 103: 044102
33 Durán-Martín P, Castro A, Millán P, et al. Influence of Bi-site substitution on the ferroelectricity of the Aurivillius compound Bi2SrNb2O9 [J]. J. Mater. Res., 1998, 13: 2565
doi: 10.1557/JMR.1998.0358
34 Wu Y, Limmer S J, Chou T P, et al. Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics [J]. J. Mater. Sci. Lett., 2002, 21: 947
doi: 10.1023/A:1016077724427
35 Tian X X, Qu S B, Wang B K, et al. Intergrowth bismuth layer-structured Na0.5Bi2.5Nb2O9-Bi4Ti3O12 high temperature ferroelectrics ceramics [J]. J. Inorg. Organomet. Polym. Mater., 2014, 24: 355
doi: 10.1007/s10904-013-9971-1
36 Kumar S, Varma K B R. Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics [J]. J. Phys., 2009, 42D: 075405
37 Diao C L, Zheng H W, Zhang Y G, et al. Structure, photoluminescence and electrical properties of BaBi3.5Eu0.5Ti4O15 ceramics [J]. Ceram. Int., 2014, 40: 13827
doi: 10.1016/j.ceramint.2014.05.099
38 Long C B, Fan H Q. Effect of lanthanum substitution at A site on structure and enhanced properties of new Aurivillius oxide K0.25Na0.25La0.5Bi2Nb2O9 [J]. Dalton Trans., 2012, 41: 11046
doi: 10.1039/c2dt31085f pmid: 22858738
39 Jiang X P, Jiang X A, Chen C, et al. Effect of potassium sodium niobate (KNN) substitution on the structural and electrical properties of Na0.5Bi4.5Ti4O15 ceramics [J]. J. Phys., 2016, 49D: 125101
40 Huang Y M, Shi D P, Liu L J, et al. High-temperature impedance spectroscopy of BaFe0.5Nb0.5O3 ceramics doped with Bi0.5Na0.5TiO3 [J]. Appl. Phys., 2014, 114A: 891
41 Rehman F, Jin H B, Li J B. Effect of reduction/oxidation annealing on the dielectric relaxation and electrical properties of Aurivillius Na0.5Gd0.5Bi4Ti4O15 ceramics [J]. RSC Adv., 2016, 6: 35102
doi: 10.1039/C6RA04628B
42 Xu Q, Lanagan M T, Luo W, et al. Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3-BaTiO3 ceramics modified with NaNbO3 [J]. J. Eur. Ceram. Soc., 2016, 36: 2469
doi: 10.1016/j.jeurceramsoc.2016.03.011
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.