Er3+ 掺杂对Bi3Ti1.5W0.5O9-Bi4Ti3O12 共生无铅压电陶瓷性能的影响
Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics
通讯作者: 江向平,教授,jiangxp64@163.com,研究方向为铁电/压电、光—电多功能陶瓷材料
责任编辑: 吴岩
收稿日期: 2021-05-12 修回日期: 2021-06-29
基金资助: |
|
Corresponding authors: JIANG Xiangping, Tel:
Received: 2021-05-12 Revised: 2021-06-29
Fund supported: |
|
作者简介 About authors
用传统固相法制备了Bi7-x Er x Ti4.5W0.5O21(BTW-BIT-xEr3+,x=0.05、0.10、0.15、0.25、0.35)共生铋层结构无铅压电陶瓷,用BTW-BIT-xEr3+的XRD和SEM表征其相结构和形貌,研究了Er3+掺杂对其上转换发光性能和电学性能的影响。结果表明:在这种陶瓷中生成了铋层状结构的单一晶相。在980 nm光波激发下所有组分的上转换荧光谱中都能清晰地观察到两个绿光和一个红光发射峰,峰的中心分别位于532 nm、548 nm和660 nm处。改变掺杂Er3+离子浓度可调节其强度比。根据BTW-BIT-0.15Er3+样品在532 nm和548 nm绿光的光强比拟合了290~440 K的温度灵敏度,结果表明440 K处的灵敏度最大为0.0023 K-1。Er3+离子替代BTW-BIT-xEr3+伪钙钛矿层的Bi3+使氧空位浓度的降低,降低了高温介电损耗,提高了激活能和压电常数。BTW-BIT-0.15Er3+陶瓷的综合电学性能最优,分别为d33=14 pC/N、Tc=697℃,tanδ=0.53%、Qm=2055。这种陶瓷材料具有最优的发光性能和良好的热稳定性。
关键词:
Bi7-x Er x Ti4.5W0.5O21(BTW-BIT-xEr3+, x=0.05, 0.10, 0.15, 0.25, 0.35) lead-free piezoelectric ceramics with intergrowth bismuth-layered structure was fabricated via solid phase synthesizing method. While the effect of Er3+-doping on their up conversion fluorescence and electrical properties was systemically investigated. The results of XRD and SEM reveal the formation of a single phase with bismuth-layered structure of Bi7-x Er x Ti4.5W0.5O21 (BTW-BIT-xEr3+(x=0.05, 0.10, 0.15, 0.25, 0.35)). Three emissions of two green and one red were observed for all the BTW-BIT-xEr3+ products with chemical compositions within the desired range under 980nm light excitation. The three emissions centered at 532 nm, 548 nm and 660 nm, and the intensity ratio of red to green emissions could be adjusted by changing the doping amount of Er3+ ions. According to the intensity ratio of 532 nm to 548 nm for BTW-BIT-0.15Er3+ in the range of 290~440 K, the temperature sensitivity was fitted and showed the maximum temperature sensitivity of 0.0023 K-1 at 440 K. The dielectric and impedance of BTW-BIT-xEr3+ ceramics were analyzed. The results show that Er3+ ions replaced Bi3+ ions in the pseudo-perovskite layer, therewith the oxygen vacancy concentration decreases, which may be accounted for the decrease of high-temperature dielectric loss, the raising of activation energy and the enhancement of piezoelectric constant. The BTW-BIT-0.15Er3+ ceramic possesses the comprehensive properties: d33=14pC/N, Tc=697℃ and tanδ=0.53%, as well as the optimal photoluminescence and good thermal stability.
Keywords:
本文引用格式
曾仁芬, 江向平, 陈超, 黄枭坤, 聂鑫, 叶芬.
ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen.
近年来,刺激响应型发光铁电材料引起了人们的关注。未来的多功能光电设备、生物成像或治疗,利用电场或磁场诱导的应变(或极化)或对光和温度的敏感性来调整电荷转移行为(上转换发光(UCL)或光致发光(PL)),或在单一材料中结合两种或多种功能制造新的功能器件[9~11]。多功能铋层状结构铁电材料(BLSFs)作为潜在的主体材料,可将其功能与发光性能相结合。BLSFs氧化物具有如压电、热释电和电光行为等耦合效应。智能材料或发光性能,能否响应电场、机械应变和温度等外部刺激,具有重要的意义。目前已经开发出一系列稀土离子掺杂的铋层状结构铁电体,例如SrBi2Nb2O9:Ho[12]、Bi7Ti4NbO21:Pr[13]、Bi4Ti3O12-SrBi4Ti4O15:Er[14]和Na0.5Bi4.5Ti4O15:Er[15]。这些铁电材料,不仅具有良好的发光性能且其电学性能也得到了提高。因此,BLSFs氧化物的上转换多功能发光材料具有良好的应用前景。
Bi3Ti1.5W0.5O9-Bi4Ti3O12是铋层共生结构陶瓷的典型代表,其结构是2层的Bi3Ti1.5W0.5O9与3层的Bi4Ti3O12沿c轴交替排列。这类材料具有较高的居里温温度(Tc~700℃)[16,17]和良好的热稳定性能。但是Bi3Ti1.5W0.5O9-Bi4Ti3O12 难于充分极化,其压电性能低(d33~7 pC/N)和高温介电损耗高,使其应用受到限制。易挥发的铋在高温烧结过程产生氧空位,对BLSFs氧化物的电学性能有重要的影响[18]。用稀土离子Er3+替代A位Bi3+离子,能降低氧空位的数量。江等[19]用Er3+离子掺杂制备的Na0.5Bi4.5Ti4O15-Bi4Ti3O12共生陶瓷具有较强的发光性能和较低的介电损耗。Er3+离子掺杂单组元Na0.5Bi4.5Ti4O15和Bi4Ti3O12具有良好的上转换发光,其电学性能也有一定的优势[15,20]。张颖等[21]用Er3+离子掺杂制备的Bi3Ti1.5W0.5O9陶瓷,不仅具有良好的发光性能其剩余极化强度和压电常数也分别提高到12.75 μC/cm2和由8.3 pC/N提高到9.6 pC/N。Renuka Bokolia等[22]用Er3+离子部分替代Bi4Ti3O12中A位Bi3+离子,使其光学性能提高并降低了电导率和介电损耗。以组元Bi3Ti1.5W0.5O9 与Bi4Ti3O12 组成的共生Bi3Ti1.5W0.5O9-Bi4Ti3O12陶瓷,有望用Er3+离子掺杂提高其电学性能。BTW-BIT陶瓷具有最大能量的拉曼模(~870 cm-1)[17]使其非辐射弛豫的概率降低,从而提高了上转换发光的量子效率[23,24]。因此,共生陶瓷BTW-BIT有望成为具有良好的光学性能和电学性能的材料。本文用传统固相法合成BTW-BIT-xEr3+共生铋层结构无铅压电陶瓷,研究Er3+掺杂对对BTW-BIT-xEr3+的结构和上转换发光及电学性能的影响。
1 实验方法
1.1 样品的制备
以纯度分别为99.999%、99.99%、99%和99.9%的Bi2O3、TiO2、WO3、和Er2O3为原料,用传统固相法合成BTW-BIT-xEr3+(x=0.05、0.10、0.15、0.25、0.35)陶瓷样品。将按化学计量比称量的所有原料置于在球磨机中进行24 h球磨,然后移料、烘干制成大片料。将大片料预烧,即置于800℃炉中保温7 h。将预烧后的大片料粉碎后进行第二次球磨,将粉料烘干后用PVA粘合剂粘结造粒。将造好的料粒制成小圆片。将小圆片放置在装有氧化铝粉的坩埚中埋烧,在温度为1060~1100℃的空气炉中保温1 h后随炉冷却到室温,得到BTW-BIT-xEr3+样品。
1.2 样品性能的表征
用D8 Advance型X射线衍射仪测试样品的XRD谱以表征其相结构。用发射扫描电子显微镜(SEM)观察样品的表面微观形貌。在样品两表面被上圆形银电极,测试其电学性能。将样品置于160℃硅油中在电场10~13 kV/mm下极化0.5 h,然后静置24 h,用准静态d33测量仪测量其压电常数。用高温介电温谱仪测试样品的介电图谱和阻抗图谱。在980 nm波长下测试样品的Er3+离子上转换发光,用荧光光谱仪记录光致发光。
2 结果和讨论
2.1 BTW-BIT-xEr3+ 的晶体结构
图1给出了BTW-BIT-xEr3+(x=0.05、0.10、0.15、0.25、0.35)陶瓷样品的室温XRD谱。从图1a可见,所有组分的各个衍射峰与Bi7Ti4NbO21标准卡片(PDF#31-0202)衍射峰位置一致,并且最强衍射峰 (116) 符合铋层的特征峰(11
图1
图1
BTW-BIT-xEr3+陶瓷在室温下的XRD图谱和BTW-BIT-xEr3+陶瓷在衍射角2θ在29°~30.5°范围的放大图
Fig.1
XRD patterns for BTW-BIT-xEr3+ ceramics at room temperature (a) and enlargement of BTW-BIT-xEr3+ ceramics with diffraction angle 2θ in the range of 29°~30.5° (b)
图2
图2
BTW-BIT样品的XRD的精修图和BTW-BIT-xEr3+样品精修后的晶格参数(a、b、c、V)及晶胞体积
Fig.2
Graphics of Rietveld refinements for BTW-BIT sample (a) and the lattice parameter (a, b, c) and cell volume (V) of BTW-BIT-xEr3+ after refinement (b)
2.2 表面形貌
图3
图3
BTW-BIT-xEr3+样品热腐蚀表面的SEM照片
Fig.3
SEM images of thermal etched face of BTW-BIT-xEr3+ samples (a) x=0.00, (b) x=0.15 (c) x=0.25 (d) x=0.35
2.3 上转换发光性能分析
图4给出了陶瓷样品BTW-BIT-xEr3+(x=0.05、0.10、0.15、0.25、0.35)在常温下980 nm波长激发的上转换荧光发光图。图4表明,陶瓷样品BTW-BIT-xEr3+在980 nm波长的激发下出现两个清晰的强绿光和一个弱红光发射峰,发射峰中心波长分别为532、548和660 nm。其原因是,Er3+离子在三个不同激发态跃迁至基态释放的光子,对应为2H11/2 →4I15/2、4S3/2 →4I15/2和4F9/2→4I15/2能级跃迁方程。图4中右上插图给出了548 nm光波强度随着Er3+离子掺杂量的变化。由插图可见,随着Er3+离子掺杂的增多发光强度先提高后降低并在x=0.15达到最强。但是红光强度随着Er3+离子掺杂量增大逐渐增强,表明红光和绿光的能级跃迁路径有所不同。
图4
图4
BTW-BIT-xEr3+(x=0.05、0.10、0.15、0.25、0.35)样品在常温下上转换荧光发光谱
Fig.4
Up-conversion emission spectra at room temperature for BTW-BIT-xEr3+ (x=0.05、0.10、0.15、0.25、0.35)
为了深入讨论Er3+离子的红光和绿光发光原理,图5给出了Er3+离子光致发光机理能级图。在光波为980 nm激发下通过基态吸收(GSA过程)或是能量传递(ET)方式,处于基态4I15/2的Er3+离子跃迁到激发态4I11/2,然后通过激发态吸收(ESA1)或ET跃迁处于激发态4I11/2的Er3+离子跃迁至更高的激发态4F7/2。亚稳态4F7/2的Er3+非辐射弛豫至激发态4H11/2,4S3/2和4F9/2,产生对应的两绿光(2H11/2/4S3/2 →4I15/2)和一红光发射带(4F9/2→4I15/2)。由于4H11/2和4S3/2能级差值小(~800 cm-1),处在能级4H11/2的Er3+离子能快速弛豫至能级4S3/2,使548 nm(4S3/2 → 4I15/2)的光强度更高。红光发射过程有三个方面:激发态2H11/2弛豫至能级4F9/2,但弛豫效率低(能隙大~3000 cm-1);位于激发态4I11/2的Er3+离子无辐射弛豫至4I13/2,然后通过ESA2过程至4F9/2;当Er3+离子浓度增大时,Er3+离子之间的距离减小致使能量失衡,产生交叉弛豫至能级4F9/2[29]。但是尽管这样,处在能级4F9/2的布局数还是不多,因此红光(660 nm)的强度较低。
图5
图5
Er3+离子光致发光机理能级图
Fig.5
Energy level diagram of up converted luminescent of Er3+
Er3+离子的掺杂浓度较低时,ETU和非辐射交叉弛豫过程(CR)的效率也比较低[15, 19]。如图4所示,Er3+离子掺杂量x为0~0.15时绿光随着Er3+离子掺杂量增大而增大,在x=0.15达到最优。其原因是,Er3+离子浓度提高并且ET和CR的效率较低。图4插图给出了黑暗中x=0.15组分的发光照片。可以看出,当x>0.15时绿光随着掺杂量的增大而变弱。其原因是,Er3+离子浓度的提高使Er3+离子之间距离减小,刺激了ET(4I11/2+4I11/2→4F7/2+4I15/2)和CR(4F7/2+4I11/2→24F9/2、4S3/2+4I9/2→24F9/2)。ET过程减小了光子的吸收过程和CR增加在能级4F9/2上的布局数,使绿光光强减弱了而使红光的相对强度提高。如图6所示,随着Er3+离子的掺杂量的增大绿光(548 nm)与红光(660 nm)的相对强度比值不断减小。由图6中的插图可见,随着Er3+离子掺杂量的增大CIE色度坐标由(0.2390、0.7126)变化至(0.2986、0.6498),表明发生了明显的红移。这表明,调节Er3+离子的掺杂量可有效调节材料的发光颜色。
图6
图6
BTW-BIT-xEr3+(x=0.05、0.10、0.15、0.25、0.35)样品的绿光548 nm和红光660 nm的强度比值,插图显示BTW-BIT-xEr3+陶瓷的CIE色度坐标
Fig.6
Intensity ratio of the green emission centred at 548 nm and the red emission centred at 660 nm. Inset CIE chromaticity coordinates of BTW-BIT-xEr3+ ceramics
对测试数据FIR随温度T的变化进行指数拟合,拟合A和ΔE值分别为3.55、839.17 cm-1。如图7b中的插图所示,灵敏度S随着温度升高而增大,并在440 K达最大值为0.0023 K-1。
图7
图7
BTW-BIT-xEr3+(x=0.05、0.10、0.15、0.25、0.35)样品在温度为290~440 K范围内上转换发光谱和FIR随温度的变化,其插图为灵敏度与温度的关系
Fig.7
Up-conversion emission spectra of BTW-BIT-xEr3+ in the temperature range of 290 K to 440 K (a) and the relation between FIR and temperature, the inset shows temperature dependence of sensitivity (b)
2.4 电学性能
图8a给出了BTW-BIT-xEr3+样品的介电温谱。可以看出,所有样品的谱都呈现双介电峰。第一峰对应的温度(Tm)在一个组元的BIT的相变温度附近,第二峰对应的温度(Tc)为共生材料的居里温度。其它铋层共生材料的介电峰,其特点与此类似[26,31,32]。从图8a还可以看出,介电常数随Er3+ 离子掺杂量的提高而减小。介电常数与电子、离子的极化率有关,而离子极化率取决于晶格参数和晶胞体积等因素。离子半径较小的Er3+取代离子半径较大的Bi3+而使晶胞参数和体积减小(图2),导致离子极化率降低。同时,增大Er3+离子掺杂量而降低Bi的含量,从而使Bi核外电子对(6s)和O(2p)轨道杂化减弱,相应地降低了离子极化率[33,34]。离子极化率的降低使εr和εm减小(表1)。因此,适量的Er3+离子掺杂可减小其介电常数。图8b给出了550~750℃的介电常数放大图。可以看出,Er3+离子的引入对其居里温度Tc影响不大。所有组分的居里温度为689~699℃,如表1所示。图8c给出了550~750℃损耗的放大图。可以看出,由常温到居里温度Tc所有组分的介电损耗都比较低,温度高于Tc后急剧增大。这个结果与铋层的介电损耗特征符合[31,35]。铋层体系的损耗与氧空位和直流电导率有关[36]。在高温烧结过程中Bi挥发而形成氧空位,其方程式为
图8
图8
BTW-BIT-xEr3+样品的介电温谱、介电常数的放大图和介电损耗的放大图
Fig.8
Permittivity temperature relationship of BTW-BIT-xEr3+ (a), a larger version of the permittivity (b) and a larger version of dielectric loss (c)
表1 BTW-BIT-xEr3+样品在常温下测量的电学性能
Table 1
x/mol | Tc/℃ | d33/pC·N-1 | εr | εm | tanδ /% | Qm | |
---|---|---|---|---|---|---|---|
0.00 | 689 | 6.9 | 245.9 | 1496 | 0.90 | 366 | |
0.05 | 691 | 9.9 | 243.7 | 1395 | 0.88 | 404 | |
0.10 | 699 | 10.3 | 225.4 | 1242 | 0.73 | 1500 | |
0.15 | 697 | 14.0 | 221.5 | 1220 | 0.53 | 2055 | |
0.25 | 691 | 12.1 | 221.2 | 1005 | 0.43 | 1676 | |
0.35 | 691 | 8.6 | 214.5 | 990 | 0.41 | 540 |
图9
图9
BTW-BIT-xEr3+样品电阻抗与频率的关系
Fig.9
Relationship between electrical impedance and frequency
为了进一步证实掺Er3+能抑制氧空位,测试了纯BTW-BIT和最优组分BTW-BIT-0.15Er样品在510~610℃的阻抗图谱,如图10所示。所有样品的测试数据呈半圆弧形状,说明在传导过程中主要是晶粒阻抗[39]。随着测试温度的提高两组分的弧形半径减小,说明阻抗不断的减小。这表明,样品具有典型的电阻的负温度效应(NTCR),其原因是热激活引起了载流子运动[40]。测试阻抗数据并利用相应等效电路拟合,可定量分析样品的电学性质。理想阻抗行为可用德拜表达式表示,由一个电容C和电阻R并联组成电路。但是这里并非理想的阻抗行为,因为移动离子、偶极子和跳跃离子等产生了扩散空间电荷[41]。因此,本文进行C//R//CPE并联电路拟合,如图10a插图所示,其中CPE表示由空间载流子电学行为的相位角元件。拟合线与
图10
图10
BTW-BIT-xEr3+陶瓷样品阻抗的Cole-Cole图
Fig.10
Cole-Cole diagram for BTW-BIT-xEr3+ ceramics (a) x=0.00, (b) x=0.15
图11
3 结论
用固相法可制备Bi7-x Er x Ti4.5W0.5O21(BTW-BIT-xEr3+, x=0.05、0.10、0.15、0.25、0.35)共生铋层结构无铅压电陶瓷,所有样品都生成了有2~3个共生结构铋层的陶瓷。掺杂适量的Er3+离子能促进晶粒的长大。在980 nm激发光下,可观察到样品发射两绿光和一红光,可归因于能级跃迁,对应的方程是2H11/2/4S3/2 →4I15/2和4F9/2→4I15/2。x=0.15的材料具有最优的上转换发光强度。改变Er3+离子掺杂浓度,可制备出不同发射光谱的样品。样品BTW-BIT-0.15Er3+在440 K的灵敏度最佳为0.0023 K-1。掺杂适量的Er3+离子能有效降低样品的氧空位浓度,从而提高其电学性能。BTW-BIT-0.15Er3+ 具有最佳电学性能:d33=14 pC/N、Tc=697℃、tanδ=0.53%、Qm=2055。
参考文献
Photoluminescence and ferroelectric properties in Eu doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectric ceramics
[J].
Luminescent, semiconducting, thermal, and structural performance of Ho3+-doped lithium borate glasses with CaF2 or MgF2
[J].
Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ co-doped NaLuF4 microcrystals
[J].
Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic
[J].
Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare‐earth oxides
[J].
Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells
[J]. J.
Improving solar cell efficiencies by down-conversion of high-energy photons
[J].
Rare‐earth ion doped up‐conversion materials for photovoltaic applications
[J].
High-temperature ferroelectricity and photoluminescence in a hybrid organic-inorganic compound: (3-Pyrrolinium)MnCl3
[J].
Tuning the luminescence of phosphors: beyond conventional chemical method
[J].
Significantly enhanced red photoluminescence properties of nanocomposite films composed of a ferroelectric Bi3.6Eu0.4Ti3O12 matrix and highly c-axis-oriented ZnO nanorods on Si substrates prepared by a hybrid chemical solution method
[J].
Ho‐doped SrBi2Nb2O9 multifunctional ceramics with bright green emission and good electrical properties
[J].
Luminescent, dielectric, and ferroelectric properties of Pr doped Bi7Ti4NbO21 multifunctional ceramics
[J].
Upconversion luminescence and ferroelectric properties of Er3+ doped Bi4Ti3O12-SrBi4Ti4O15
[J].
Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics
[J].
Rietveld analysis and dielectric properties of Bi2WO6-Bi4Ti3O12 ferroelectric system
[J].
Enhanced piezoelectric properties and low electrical conductivity of Ce-doped Bi7Ti4.5W0.5O21 intergrowth piezoelectric ceramics
[J].
Enhanced dielectric and piezoelectric properties of aurivillius-type potassium bismuth titanate ceramics by cerium modification
[J].
Up-conversion photoluminescence and temperature sensing properties of Er3+-doped Bi4Ti3O12 nanoparticles with good water-resistance performance
[J].
Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics
[J].
Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12 ferroelectric ceramics
[J].
Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass-ceramics
[J].
Novel upconversion behavior in Ho3+-doped transparent oxyfluoride glass-ceramics containing NaYbF4 nanocrystals
[J].
Enhanced pyroelectric and piezoelectric responses in W/Mn-codoped Bi4Ti3O12 Aurivillius ceramics
[J].
Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing
[J].
Effect of CeO2-doping on properties of SrNa0.5Bi4.5Ti5O18- based high temperature lead-free piezoelectric ceramics
[J].
CeO2掺杂对SrNa0.5Bi4.5Ti5O18高温无铅压电陶瓷性能的影响
[J].用固相合成法制备SrNa<sub>0.5</sub>Bi<sub>4.5</sub>Ti<sub>5</sub>O<sub>18</sub> + x%(质量分数) CeO<sub>2</sub> (SNBTC<sub>x</sub>) 铋层状无铅压电陶瓷, 研究了CeO<sub>2</sub>掺杂对SNBTC<sub>x</sub> 陶瓷微观结构和电性能的影响。结果表明, CeO<sub>2</sub>掺杂并未改变SNBTC<sub>x</sub>陶瓷的晶体结构, 所有样品均为单一的铋层状结构陶瓷; CeO<sub>2</sub>掺杂没有使SNBTC<sub>x</sub>陶瓷居里温度发生明显变化, 居里温度均高于560℃; 随着CeO<sub>2</sub>掺杂量的增加SNBTC<sub>x</sub>陶瓷材料的介电常数减小, 但是其介电损耗先增大后减小。当CeO<sub>2</sub>掺杂量为0.3%(质量分数)时SNBTC<sub>0.03</sub>陶瓷具有最优电性能: T<sub>c</sub> = 567℃, d<sub>33</sub>=29 pC/N, tanδ=0.015, 且在500℃退极化处理后, 其d<sub>33</sub>仍保持在22 pC/N以上, 说明SNBTC<sub>0.03</sub>陶瓷可在高温下应用。
Photoluminescence and electrical properties of Er3+-doped Na0.5Bi4.5Ti4O15—Bi4Ti3O12 inter-growth ferroelectric ceramics
[J].
Effect of Er3+-doping on electrical and photoluminescence properties of Na0.25K0.25Bi2.5Nb2O9 piezoelectric ceramics
[J].
Er3+掺杂对Na0.25K0.25Bi2.5Nb2O9压电陶瓷电学和光学性能的影响
[J].
Bright green upconversion emission and enhanced ferroelectric polarization in Sr1-1.5 x Er x Bi2Nb2O9
[J].
Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing
[J].
Er3+-Yb3+ co-doped silicate glass for optical temperature sensor
[J].
Aliovalent B-site modification on three- and four-layer Aurivillius intergrowth
[J].
Influence of Bi-site substitution on the ferroelectricity of the Aurivillius compound Bi2SrNb2O9
[J].
Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics
[J].
Intergrowth bismuth layer-structured Na0.5Bi2.5Nb2O9-Bi4Ti3O12 high temperature ferroelectrics ceramics
[J].
Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics
[J].
Structure, photoluminescence and electrical properties of BaBi3.5Eu0.5Ti4O15 ceramics
[J].
Effect of lanthanum substitution at A site on structure and enhanced properties of new Aurivillius oxide K0.25Na0.25La0.5Bi2Nb2O9
[J].Aurivillius ferroelectrics K(0.25)Na(0.25)La(0.5)Bi(2)Nb(2)O(9) (KNBN-La) and K(0.25)Na(0.25)Bi(2.5)Nb(2)O(9) (KNBN-Bi) were prepared by using solid-state reaction process. Rietveld refinements for the KNBN-La and KNBN-Bi were carried out by using powder X-ray diffraction at room temperature and they were confirmed to be two-layer Aurivillius oxides with orthorhombic space group A2(1)am. The lattice parameters are a = 5.50468(10) Å, b = 5.49217(10) Å, and c = 25.05108(35) Å for KNBN-La and a = 5.48867(6) Å, b = 5.47895(6) Å, and c = 25.10591(25) Å for KNBN-Bi. Lanthanum (La(3+)) substitution for bismuth (Bi(3+)) led to an enhancement in relaxation behavior for the KNBN-La ceramics, with a ferroelectric to paraelectric phase transition temperature (T(c)) of about 360 °C. The KNBN-La ceramics had a high remnant polarization (P(r)) of 13.6 μC cm(-2) and a field-induced strain of up to 0.031%. Particularly, the decrease in P(r) for the KNBN-La ceramics after 10(8) cumulative switching cycles was only 6%.
Effect of potassium sodium niobate (KNN) substitution on the structural and electrical properties of Na0.5Bi4.5Ti4O15 ceramics
[J].
High-temperature impedance spectroscopy of BaFe0.5Nb0.5O3 ceramics doped with Bi0.5Na0.5TiO3
[J].
Effect of reduction/oxidation annealing on the dielectric relaxation and electrical properties of Aurivillius Na0.5Gd0.5Bi4Ti4O15 ceramics
[J].
/
〈 |
|
〉 |
