Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (3): 175-182    DOI: 10.11901/1005.3093.2021.241
  研究论文 本期目录 | 过刊浏览 |
TA5钛合金的应变补偿物理本构模型和加工图
王俊1, 王克鲁1(), 鲁世强1, 李鑫1, 欧阳德来2, 邱仟1, 高鑫1, 张开铭1
1.南昌航空大学航空制造工程学院 南昌 330063
2.南昌航空大学材料科学与工程学院 南昌 330063
Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy
WANG Jun1, WANG Kelu1(), LU Shiqiang1, LI Xin1, OUYANG Delai2, QIU Qian1, GAO Xin1, ZHANG Kaiming1
1.School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

王俊, 王克鲁, 鲁世强, 李鑫, 欧阳德来, 邱仟, 高鑫, 张开铭. TA5钛合金的应变补偿物理本构模型和加工图[J]. 材料研究学报, 2022, 36(3): 175-182.
Jun WANG, Kelu WANG, Shiqiang LU, Xin LI, Delai OUYANG, Qian QIU, Xin GAO, Kaiming ZHANG. Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy[J]. Chinese Journal of Materials Research, 2022, 36(3): 175-182.

全文: PDF(10254 KB)   HTML
摘要: 

使用Gleeble-3800热模拟试验机对TA5钛合金进行等温恒应变速率压缩,研究其在变形温度为850~1050℃、应变速率为0.001~10 s-1和最大变形量为60%条件下的高温热变形行为;建立了引入物理参量的应变补偿本构模型,并根据DMM模型得到了加工图。结果表明:TA5钛合金为正应变速率敏感性和负变形温度相关性材料;考虑物理参量的应变补偿本构模型具有较高的预测精度,其相关系数R为0.99,平均相对误差AARE为8.95%。分析加工图和观察微观组织,发现失稳区域(850~990℃,0.05~10 s-1)的主要变形机制为局部流动;稳定区域(870~990℃,0.005~0.05 s-1)的主要变形机制为动态回复和动态再结晶。TA5钛合金的最佳热加工工艺参数范围为870~990℃和0.005~0.05 s-1

关键词 金属材料TA5钛合金高温变形行为物理本构加工图工艺参数优化    
Abstract

The thermal deformation behavior of TA5 Ti-alloy was investigated via Gleeble-3800 thermal simulation machine in temperature range of 850~1050℃ by strain rate within 0.001~10 s-1, while the maximum deformation of 60%; A strain compensation constitutive model in consideration of the relevant physical parameters was established, and the processing diagram was obtained according to the DMM model. The results show that: TA5 Ti-alloy is a kind of material with positive strain rate sensitivity and negative deformation temperature dependence; By taking physical parameters into account, the established strain compensation constitutive model has high prediction accuracy with a correlation coefficient R of 0.99, while the average relative error AARE is 8.95%. It was found that the main deformation mechanism in the instability zone (850~990℃, 0.05~10 s-1) was local flow, which accords well with the analysis result of processing diagram coupled with observation of the microstructure; The deformation mechanisms in the stable region (870~990℃, 0.005~0.05 s-1) are mainly dynamic recovery and dynamic recrystallization. It follows that the optimal processing parameters for thermal deformation of TA5 Ti-alloy are 870-990℃ and 0.005~0.05 s-1.

Key wordsmetal material    TA5 titanium alloy    high temperature deformation behavior    physics constitutive    processing map    optimal process parameter
收稿日期: 2021-04-15     
ZTFLH:  TG146.23  
基金资助:国家自然科学基金(51761029);南昌航空大学研究生创新专项基金(YC2020026)
作者简介: 王俊,男,1996年生,硕士
图1  TA5钛合金的原始组织
图2  TA5钛合金在不同变形条件下的流变应力曲线
图3  TA5钛合金在不同变形条件下的峰值应力

D0/

m2·s-1

Qsd/

J·mol-1

G0/

MPa

E0/

GPa

Tm/

K

TmG0dGdT
1.5×10-42.91×1054.36×1041261933-1.2
表1  合金的相关材料参数
  
图4  在850≤T≤950℃条件下的材料常数α、n、lnB与ε的六次多项式拟合关系
图5  在950<T≤1050℃条件下的材料常数α˙、n˙、lnB?与ε的七次多项式拟合关系
图6  TA5钛合金在不同变形温度的流变应力预测值与实验值的对比
图7  TA5钛合金不同应变下的加工图
图8  TA5钛合金在稳定区域的微观组织
图9  TA5钛合金在失稳区域的微观组织
1 Liu P S, Qing H B. A spherical-pore foamed titanium alloy with high porosity [J]. Chin. J. Mater. Res., 2015, 29(05): 346
1 刘培生, 顷淮斌, 一种具有球形孔隙的高孔率泡沫钛合金 [J]. 材料研究学报, 2015, 29(05): 346
2 Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., A, 1996, 213(1): 103
3 Zhang A F, Zhang J Z, Zhang X X Z, et al. Research progress in tissue regulation and anisotropy of high-performance titanium alloy by laser additive manufacturing [J]. Journal of Netshape Forming Engineering, 2019, 11(4): 1
3 张安峰, 张金智, 张晓星 等. 激光增材制造高性能钛合金的组织调控与各向异性研究进展 [J]. 精密成形工程, 2019, 11(4): 1
4 Zhou Y L, Yang Q Y, Zhang W W, et al. Hot deformation behavior and constitutive equation of TB8 titanium alloy with a lamellar structure of α phase [J]. Mater. Eng., 2021, 49(01): 75
4 周亚利, 杨秋月, 张文玮 等.具有层片状α相组织的TB8钛合金热变形行为及本构方程 [J]. 材料工程, 2021, 49(01): 75
5 Zhao Q, Chen Y, Xu Y, et al. Hot Deformation Behavior and Mechanism of As-cast Ti-5553 Alloy with Coarse Grains [J]. Rare Metal Mat. Eng., 2020, 49(11): 3653
6 Zhou F, Wang K L, Lu S Q, et al. High temperature flow behavior and physical constitutive model of Ti2AlNb based alloy containing rare earth [J]. T Mater Heat Treat, 2018, 39(12): 109
6 周 峰, 王克鲁, 鲁世强 等. 含稀土的Ti_2AlNb基合金高温流动行为及物理本构模型 [J]. 材料热处理学报, 2018, 39(12): 109
7 Xu X, Dong L M, Ba H B, et al. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field [J]. Nonferrous Met. Soc. China,Trans., 2016, 26(11): 2874
8 Mirzadeh H. Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions [J]. Mech. Mater., 2015, 85(6): 66
9 Mirzadeh H. A comparative study on the hot flow stress of Mg-Al-Zn magnesium alloys using a simple physically-based approach [J]. J. Magn. Alloys, 2014, 2(9): 225
10 Mirzadeh H. Constitutive description of 7075 aluminum alloy during hot deformation by apparent and physically-based approaches [J]. Journal of Materials Engineering and Performance, 2015, 24(3): 1095
11 Wang X C, OuYang D L, Lu S Q, et al. Study on constitutive relationship of TC21 titanium alloy with lamellar structure considering physical parameters [J]. J. Plast. Eng., 2020, 27(12): 191
11 万兴才, 欧阳德来, 鲁世强 等. 考虑物理参量的片层态TC21钛合金本构关系研究 [J]. 塑性工程学报, 2020, 27(12): 191
12 Wei H L, Liu G Q, Zhang M H. Physically based constitutive analysis to predict flow stress of medium carbon and vanadium microalloyed steels [J]. Mater. Sci. Eng. A, 2014, 602
13 He S L, Feng Y Q, Wang Y Q, et al. Effect of TA5 titanium alloy structure on the properties of forgings [J]. Acta. Metall. Sin., 2002, 38(z1): 204
13 何书林, 冯永琦, 王永强 等. TA5钛合金组织对锻件性能的影响 [J]. 金属学报, 2002, 38(z1): 204
14 Yu W X, Lv Y F, Li S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates [J]. Mater. Sci. Eng. A, 2015, 639
15 Peng Y Q, Pang Y Q, Yang Z S. Study on hot pressing flow stress of TA5 titanium alloy [J]. Rare Metal, 1994, (01): 28
15 彭益群, 潘雅琴, 杨昭苏. TA5钛合金热压流变应力的研究 [J]. 稀有金属, 1994(01): 28
16 Zhou X, Wang K L, Lu S Q, et al. Flow behavior and 3D processing map for hot deformation of Ti-2.7Cu alloy [J]. J. Mater. Res. Technol., 2020, 9(3)
17 Li M Z, Bai C G, Zhang Z Q, et al. Hot deformation behavior of TC2 titanium alloy [J]. Chin. J. Mater. Res., 2020, 34(12): 892
17 李沐泽, 柏春光, 张志强 等. TC2钛合金的高温热变形行为 [J]. 材料研究学报, 2020, 34(12): 892
18 Wang W, Gong P H, Zhang G Z, et al. Hot deformation behavior of TC4 Ti-alloy prepared by electron beam cold hearth melting [J]. Chin. J. Mater. Res., 2020, 34(9): 665
18 王 伟, 宫鹏辉, 张浩泽 等. 电子束冷床熔炼TC4钛合金的热变形行为 [J]. 材料研究学报, 2020, 34(9): 665
19 Huang B Y, Li C G, Shi L K. Nonferrous Materials Manual (Volume One) [M]. Beijin: Chemical Industry Press, 2009: 520
19 黄伯云, 李成功, 石力开. 有色金属材料手册 (上) [M]. 北京: 化学工业出版社, 2009: 520
20 Frost H J, Ashby M F. Deformation mechanism maps: the plasticity and creep of metals and ceramics [M]. Oxford: Pergamon Press, 1982
21 Kroll S, Stolwijk N, Herzig C H. Titanium self-diffusion in the intermetallic compound γ-TiAl [J].Defect and Diffusion Forum, 1993, 95/98(6): 865
22 Li H Y, Liu Y, Hu J D, et al. Hot deformation and processing drawing of ZA27 alloy [J]. Chin. J. Nonferrous Met., 2012, 22(2): 365
22 李红英, 刘 洋, 胡继东 等. ZA27合金的热变形及加工图 [J]. 中国有色金属学报, 2012, 22(2): 365
23 Prasad Y V R K, Gegel H L, Doraivelu S M, Malas J C, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Trans., A, 1984, 15(10): 1883
24 Liu J J, Wang K L, LU S Q, et al. Hot deformation behavior and processing map of Zr-4 alloy [J]. Journal of Nuclear Materials, 2020, 531: 151993
25 Ren S J, Wang K L, Lu S Q, et al. Physical constitutive model and processing diagram of TiAl alloy [J]. Chin. J. Nonferrous Met., 2020, 30(6): 1289
25 任书杰, 王克鲁, 鲁世强 等. TiAl合金的物理本构模型与加工图 [J]. 中国有色金属学报, 2020, 30(6): 1289
26 Ding Z, Fan J, Zhang Z X, et al. Microstructure and texture variations in high temperature titanium alloy Ti65 sheets with different rolling modes and heat treatments [J]. Mater., 2020; 13(11): 2466
27 Seshacharyulu T, Medeiros S C, Frazier W G, et al. Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure [J]. Mater. Sci. Eng. A, 2002, 325(1-2): 112
28 Yong N, Hou H L, Li M Q, et al. High temperature deformation behavior of a near alpha Ti600 titanium alloy [J]. Mater. Sci. Eng. A, 2008, 492: 24
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.