Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (3): 161-174    DOI: 10.11901/1005.3093.2021.287
  综述 本期目录 | 过刊浏览 |
偏压技术在金刚石薄膜制备中应用的进展
邵思武1, 郑宇亭1,2, 安康1,2, 黄亚博1, 陈良贤1, 刘金龙1, 魏俊俊1, 李成明1()
1.北京科技大学新材料技术研究院 北京 100083
2.北京科技大学顺德研究生院 广东 528399
Progress on Application of Bias Technology for Preparation of Diamond Films
SHAO Siwu1, ZHENG Yuting1,2, AN Kang1,2, HUANG Yabo1, CHEN Liangxian1, LIU Jinlong1, WEI Junjun1, LI Chengming1()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Shunde Graduate School, University of Science and Technology Beijing, Guangdong 528399, China
引用本文:

邵思武, 郑宇亭, 安康, 黄亚博, 陈良贤, 刘金龙, 魏俊俊, 李成明. 偏压技术在金刚石薄膜制备中应用的进展[J]. 材料研究学报, 2022, 36(3): 161-174.
Siwu SHAO, Yuting ZHENG, Kang AN, Yabo HUANG, Liangxian CHEN, Jinlong LIU, Junjun WEI, Chengming LI. Progress on Application of Bias Technology for Preparation of Diamond Films[J]. Chinese Journal of Materials Research, 2022, 36(3): 161-174.

全文: PDF(13414 KB)   HTML
摘要: 

近年来,用偏压技术进行异质外延单晶金刚石生长并将其尺寸增大到英寸级以上。偏压技术强大的形核能力使其也可用于制备取向金刚石薄膜、纳米金刚石薄膜和超纳米金刚石薄膜。本文综述了国内外关于偏压技术的机理以及偏压的形式和设备等方面的研究现状,以及表面反应模型、热尖峰模型和亚层注入模型的机理。常用的偏压包括直流偏压、直流脉冲偏压、脉冲叠合偏压和双极性脉冲偏压。还介绍了偏压对金刚石薄膜组织和性能的影响,详细阐述了其对取向生长,二次形核率,无定形碳-石墨-金刚石相转变以及生长速率和结合力的作用规律和机理。加偏压能改变轰击粒子能量和特定基团的浓度、影响金刚石相的转变和晶粒取向和尺寸,进而影响金刚石薄膜的光,力,热,电学性能。还讨论了目前研究工作中存在的一些不足,如偏压作用的机理仍不清晰,对电子浓度变化,氢原子刻蚀的作用尚缺少明确的解释等。最后展望了偏压技术在金刚石制备领域未来的研究和应用方向。

关键词 评述化学气相沉积偏压金刚石薄膜异质外延生长    
Abstract

In recent years, heteroepitaxial monocrystalline diamond has been grown by bias voltage technique and its size has been increased to over inch level. Since the application of bias can act as a means to significantly promote nuclear capability of diamound, therefore, the bias voltage technology may be used to prepare oriented diamond films, nano diamond films and ultra-nano diamond films etc. In this paper, the mechanism related with the action of bias technology, the forms and devices of bias technology, as well as the mechanism of surface reaction model, thermal peak model and sublayer injection model are reviewed. The commonly used bias techniques include DC bias, DC pulse bias, pulse overlap bias and bipolar pulse bias. The effect of bias voltage on the microstructure and properties of diamond films are also introduced, and the effect of applied bias voltage on the orientation growth, secondary nucleation rate, amorphous carbon-graphite-diamond phase transition, growth rate and bonding force of diamond films are described in detail. Biasing can change the energy of bombarded particles and the concentration of specific groups, affect the transformation of diamond phase and grain orientation and size, and then affect the optical, mechanical, thermal and electrical properties of diamond films. Some shortcomings in the present research work are also discussed, such as the mechanism related with the action of bias is still not clear, the change of electron concentration and the effect of hydrogen etching are still not clearly explained. Finally, the future research and application directions of bias voltage technology for diamond preparation are also prospected.

Key wordsreview    chemical vapor deposition    bias voltage    diamond films    heteroepitaxial growth
收稿日期: 2021-05-06     
ZTFLH:  TB34  
基金资助:国家重点研发计划(2018YFB0406500);国家重点研发计划(2016YFE0133200);欧洲地平线Horizon 2020计划(734578);北京科技大学顺德研究生院科研经费(2020BH015)
作者简介: 邵思武,男,1995年生,博士生
图1  等离子体放电和偏压的作用的示意图[30]
图2  偏压处理过程中硅衬底表面的反应
图3  不同能量离子的轰击效果和离子亚层注入诱导热尖峰[34]
图4  类金刚石团簇转换成金刚石团簇的示意图[36]
图5  直流偏压、直流脉冲偏压、脉冲叠合偏压和双极脉冲偏压[43]
图6  典型偏压辅助化学气相沉积设备示意图[44~47]
图7  典型BEN参数下几种粒子的强度分布(P=25 mbar, T=800℃, MW power=900 W, Ubias=-200 V, 100 sccm H2, 0.25 sccm CH4)和不同离子的总离子通量随负偏压的变化
图8  Ir衬底上BEN作用下金刚石外延形核过程:离子轰击诱导-掩埋横向生长机理[11]
图9  在硅[65] 和金属铱上金刚石的形核密度与偏压的关系[44]
图10  不同衬底上异质外延生长金刚石薄膜的表面形貌[42, 58, 67, 68]
图11  金刚石在Si(001)上定向成核时间窗随偏压的变化和10 μm厚金刚石薄膜暴露于-200 V偏压环境下15 min后的形貌[72]
图12  在0 V、 -100 V、 -200 V和、-300 V偏压下生长的beg-NCD薄膜的SEM照片,插图为横截面形貌[73]
图13  在-250 V偏压下N2/CH4等离子体中沉积10 min、30 min和60 min的超纳米金刚石薄膜的SEM 和TEM照片[72]
图14  未加偏压沉积UNCD/a-C薄膜的横截面照片和划痕照片以及在40 kHz偏压下沉积UNCD/a-C薄膜的横截面照片和)划痕照片[78]
1 Zhang L, Zhou K, Wei Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage [J]. Appl. Energy, 2019, 233-234(JAN. 1): 208
2 Wang Y B, Huang N, Liu L S, et al. Preparation and cutting performance of diamond coated hard alloy cutting tools for 7075 aviation Al-alloy [J]. Chin. J. Mater. Res., 2019, 33(1): 15
2 王宜豹, 黄 楠, 刘鲁生 等. 加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能 [J]. 材料研究学报, 2019, 33(1): 15
3 Garrett D J, Tong W, Simpson D A, et al. Diamond for neural interfacing: A review [J]. Carbon, 2016, 102: 437
4 Gao Y, Gao N, Li H, et al. Semiconductor SERS of diamond [J]. Nanoscale, 2018, 10(33): 15788
5 Yu Y, Qiu W Q, Pan J W, et al. Preparation of inlay structure diamond films on low-alloy steel substrate [J]. Chin. J. Mater. Res., 2013(02): 202
5 余 赟, 邱万奇, 潘建伟 等. 在低合金钢基体表面沉积镶嵌结构界面金刚石膜 [J]. 材料研究学报, 2013(02): 202
6 Navalons S, Dhakshinamoorthy A, Alvaro M, et al. Diamond nanoparticles in heterogeneous catalysis [J]. Chem. Mater., 2020, 32(10): 4116
7 Chae K W, Baik Y J, Park J K, et al. The 8 inch free standing CVD diamond wafer fabricated by DC-PACVD [J]. Diam. Relat. Mater., 2010, 19(10): 1168
8 Lu Y J, Lin C N, Shan C X, et al. Optoelectronic diamond: growth, properties, and photodetection applications [J]. Adv. Opt. Mater., 2018, 06(20): 1800359
9 Yuan X L, Zheng Y T, Zhu X H, et al. Recent progress in diamond based MOSFETs [J]. Int. J. Miner., Metall. Mater., 2019, 26(10): 1195
10 Yamada H, Chayahara A, Mokuno Y, et al. A 2-in mosaic wafer made of a single-crystal diamond [J]. Appl. Phys. Lett., 2014, 104(10): 102110
11 Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers [J]. Sci. Rep., 2017, 7(1): 1
12 Fujisaki T, Tachiki M, Taniyama N, et al. Initial growth of heteroepitaxial diamond on Ir(001)/MgO(001) substrates using antenna edge type microwave plasma assisted chemical vapor deposition [J]. Diam. Relat. Mater., 2003, 12(3-7): 246
13 Vaissiere N, Saada S, Bouttemy M, et al. Heteroepitaxial diamond on iridium: New insights on domain formation [J]. Diam. Relat. Mater., 2013, 36: 16
14 Sawabe A, Fukuda H, Suzuki T, et al. Interface between CVD diamond and iridium films [J]. Surf. Sci., 2000, 467(1-3): L845
15 Golding B, Bednarski-meinke C, Dai Z. Diamond heteroepitaxy: pattern formation and mechanisms [J]. Diam. Relat. Mater., 2004, 13(4-8): 545
16 Wang Y, Wang W, Shu G, et al. Virtues of Ir(100) substrate on diamond epitaxial growth: first-principle calculation and XPS study [J]. J. Cryst. Growth, 2021, 560: 126047
17 Arnault J C, Saada S, Delclos S, et al. Surface science contribution to the BEN control on Si(100) and 3C-SiC(100): towards ultrathin nanocrystalline diamond films [J]. Chem. Vap. Deposition, 2008, 14(7-8): 187
18 Hoffman A, Michaelson S, Akhvlediani R, et al. Comparison of diamond bias enhanced nucleation on Ir and 3C-SiC: A high resolution electron energy loss spectroscopy study [J]. Phys. Status Solidi A, 2009, 206(9): 1972
19 Tachibana T, Yokota Y, Hayashi K, et al. Growth of {111}-oriented diamond on Pt/Ir/Pt substrate deposited on sapphire [J]. Diam. Relat. Mater., 2001, 10(9-10): 1633
20 Gsell S, Fischer M, Brescia R, et al. Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon [J]. Appl. Phys. Lett., 2007, 91(6): 061501
21 Gallheber B C, Fischer M, Mayr M, et al. Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111) [J]. J. Appl. Phys., 2018, 123(22): 225302.1-225302.11
22 Chen Y C, Zhong X Y, Konicek A R, et al. Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth [J]. Appl. Phys. Lett., 2008, 92(13): 240
23 Vaissiere N, Saada S, Lee K H, et al. Porous diamond foam with nanometric diamond grains using Bias Enhanced Nucleation on iridium [J]. Diam. Relat. Mater., 2016, 68: 23
24 Teng K Y, Chen H C, Tzeng G C, et al. Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films [J]. J. Appl. Phys., 2012, 111(5): 53701
25 Fan B Q, Wang C X, Xu Y Z, et al. Influence of deposition pressure on micron-nanometer transition of diamond film [J]. Diamond & Abrasives Engineering., 2021, 41(01): 12
25 范冰庆, 王传新, 徐远钊 等. 沉积气压对金刚石膜微米纳米结构转变的影响 [J]. 金刚石与磨料磨具工程, 2021, 41(01): 12
26 Zhang X Q, Huang M D, Ke P L, et al. Impact of bias on the graphite-like carbon films grown by high power impulse magnetron sputtering [J]. Chin. J. Vac. Sci. Technol., 2013, 33(010): 969
26 张学谦, 黄美东, 柯培玲 等. 基体偏压对高功率脉冲磁控溅射制备类石墨碳膜的影响研究 [J]. 真空科学与技术学报, 2013, 33(010): 969
27 Huang M D, Xu S P, Liu Y, et al. Influence of negative bias on TiAlN films by arc ion plating [J]. Surf. Technol., 2012, 41(06): 1-3+6
27 黄美东, 许世鹏, 刘 野 等. 负偏压对电弧离子镀复合TiAlN薄膜的影响 [J]. 表面技术, 2012, 41(06): 1-3+6
28 Tang P, Wang Q M, Lin Songsheng, et al. Influence of substrate bias on the structure and properties of AlCrN coatings deposited by high power impulse magnetron sputtering [J]. Mater. Res. Appl., 2019, 13(04): 257
28 唐 鹏, 王启民, 林松盛 等. 基体偏压对高功率脉冲磁控溅射AlCrN涂层结构及其性能的影响 [J]. 材料研究与应用, 2019, 13(04): 257
29 Zheng Y L, Wu B Z, Yong Z, et al. Effects of superimposed pulse bias on TiN coating in cathodic arc deposition [J]. Surf. Coat. Technol., 2000, 131(1-3): 158
30 Schreck M. Single Crystal Diamond Growth on Iridium[M]. Compr. Hard Mater., 2014: 269
31 Shigesato Y, Boekenhauer R E, Sheldon B W, et al. Emission spectroscopy during direct-current-biased microwave-plasma chemical vapor deposition of diamond [J]. Appl. Phys. Lett., 1993, 63(3): 314
32 Yang G W, Mao Y D. Effect of bisa-enhanced nucleation in diamond films growth by CVD methods [J]. Vacuum, 1996(01): 30
32 杨国伟, 毛友德. CVD生长金刚石薄膜衬底负偏压增强成核效应 [J]. 真空, 1996(01): 30
33 Koehler J S, Seitz F. Steady-state processes not involving lattice rearrangement. Introductory paper [J]. Discuss. Faraday Soc., 1957, 23: 85
34 Weiler M, Robertson J, Sattel S, et al. Formation of highly tetrahedral amorphous hydrogenated carbon, ta-C:H [J]. Diam. Relat. Mater., 1995, 4(4): 268
35 Lifshitz Y, Kasi S R, Rabalais J W, et al. Subplantation model for film growth from hyperthermal species [J]. Phys. Rev. B, 1990, 41(15): 10468
36 Lifshitz Y, Kohler T, Frauenheim T, et al. The mechanism of diamond nucleation from energetic species [J]. Science, 2002, 297(5586): 1531
37 Yao Y, Liao M Y, Koehler T, et al. Diamond nucleation by energetic pure carbon bombardment [J]. Phys. Rev. B, 2005, 72(3): p.035402.1-035402.5
38 Huang Y B, Chen L X, Jia X, et al. Microstructure, hardness and optical properties of Er2O3 films deposited on diamond-coated and Si(100) substrates by radio frequency magnetron sputtering [J]. Thin Solid Films, 2020, 709: 138131
39 Forniés E, Galindo R E, Sánchez O, et al. Growth of CrNx films by DC reactive magnetron sputtering at constant N2/Ar gas flow [J]. Surf. Coat. Technol., 2006, 200(20-21): 6047
40 Fujisaki T, Tachiki M, Taniyama N, et al. Fabrication of heteroepitaxial diamond thin films on Ir(001)/MgO(001) substrates using antenna-edge-type microwave plasma-assisted chemical vapor deposition [J]. Diam. Relat. Mater., 2002, 11(3-6): 478
41 Huang M D, Sun C, Lin G Q, et al. Mechanical property of low temperature deposited TiN film by pulsed biased arc ion plating [J]. Acta Metall. Sin., 2003, 39(05): 516
41 黄美东, 孙 超, 林国强 等. 脉冲偏压电弧离子低温沉积TiN硬质薄膜的力学性能 [J]. 金属学报, 2003, 39(05): 516
42 Suto T, Yaita J, Iwasaki T, et al. Highly oriented diamond (111) films synthesized by pulse bias-enhanced nucleation and epitaxial grain selection on a 3C-SiC/Si (111) substrate [J]. Appl. Phys. Lett., 2017, 110(6): 062102
43 Zhang P, Du J, Tian F, et al. Research status quo of pulsed bias arc ion plating [J]. Journal Of Academy Of Armored Force Engineering, 2009(02): 71
43 张 平, 杜 军, 田 飞 等. 脉冲偏压离子镀的研究现状 [J]. 装甲兵工程学院学报, 2009(02): 71
44 Regmi M, More K, Eres G. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition [J]. Diam. Relat. Mater., 2012, 23: 28
45 Yaita J, Iwasaki T, Natal M, et al. Heteroepitaxial growth of diamond films on 3C-SiC(001)/Si substrates by antenna-edge microwave plasma CVD[C]// 2014 International Conference on Solid State Devices and Materials. 2014
46 Arnault J C, Vonau F, Mermoux M, et al. Surface study of iridium buffer layers during the diamond bias enhanced nucleation in a HFCVD reactor [J]. Diam. Relat. Mater., 2004, 13(3): 401
47 Ohtsuka K, Suzuki K, Sawabe A, et al. Epitaxial growth of diamond on iridium [J]. Jpn. J. Appl. Phys., 1996, 35(8B): L1072
48 Lim S H, Yoon H S, Moon J H, et al. Optical emission spectroscopy study for optimization of carbon nanotubes growth by a triode plasma chemical vapor deposition [J]. Appl. Phys. Lett., 2006, 88(3): 033114
49 Schreck M, Stritzker B. Nucleation and growth of heteroepitaxial diamond films on silicon [J]. Phys. Status Solidi, 2010, 154(1): 197
50 Kátai S, Kováts A, Maros I, et al. Ion energy distributions and their evolution during bias-enhanced nucleation of chemical vapor deposition of diamond [J]. Diam. Relat. Mater., 2000, 9(3-6): 317
51 Katai S, Tass Z, Hars G, et al. Measurement of ion energy distributions in the bias enhanced nucleation of chemical vapor deposited diamond [J]. J. Appl. Phys., 1999, 86(10): 5549
52 Gerber J, Weiler M, Sohr O, et al. Investigations of diamond nucleation on a-C films generated by d.c. bias and microwave plasma [J]. Diam. Relat. Mater., 1994, 3(4-6): 506
53 Bauer T, Schreck M, Hormann F, et al. Analysis of the total carbon deposition during the bias enhanced nucleation of diamond on Ir/SrTiO3 (001) using 13C-methane [J]. Diam. Relat. Mater., 2002, 11(3-6): 493
54 Hörmann F, Bauer T, Schreck M, et al. TEM analysis of nanometer-size surface structures formed by bias enhanced nucleation of diamond on iridium [J]. Diam. Relat. Mater., 2003, 12(3-7): 350
55 Li Y F, She J M, Su J J, et al. Heteroepitaxial nucleation of diamond on Ir(100)/MgO(100) substrate by bias enhanced microwave plasma chemical vapor deposition method [J]. J. Synth. Cryst., 2015, 04: 896
55 李义锋, 佘建民, 苏静杰 等. 偏压加强MPCVD法Ir(100)/MgO(100)基片上金刚石异质外延形核 [J]. 人工晶体学报, 2015, 04: 896
56 Yoshikawa T, Herrling D, Meyer F, et al. Influence of substrate holder configurations on bias enhanced nucleation area for diamond heteroepitaxy: Toward wafer-scale single-crystalline diamond synthesis [J]. J. Vac. Sci. Technol., 2019, 37(2): 021207
57 Yugo S, Kanai T, Kimura T, et al. Generation of diamond nuclei by electric field in plasma chemical vapor deposition [J]. Appl. Phys. Lett., 1991, 58(10): 1036
58 Jiang X, Jia C L. The coalescence of [001] diamond grains heteroepitaxially grown on (001) silicon [J]. Appl. Phys. Lett., 1996, 69(25): 3902
59 Schreck M, Hörmann F, Roll H, et al. Diamond nucleation on iridium buffer layers and subsequent textured growth: A route for the realization of single-crystal diamond films [J]. Appl. Phys. Lett., 2001, 78(2): 192
60 Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir [J]. Diam. Relat. Mater., 2019, 94: 92
61 Ichikawa K, Kodama H, Suzuki K, et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir [J]. Diam. Relat. Mater., 2017, 72: 114
62 Aida H, Kim S W, Ikejiri K, et al. Microneedle growth method as an innovative approach for growing freestanding single crystal diamond substrate: Detailed study on the growth scheme of continuous diamond layers on diamond microneedles [J]. Diam. Relat. Mater., 2016, 75: 34
63 McGinnis S P, Kelly M A, Hagstrom S B. Evidence of an energetic ion bombardment mechanism for bias‐enhanced nucleation of diamond [J]. Appl. Phys. Lett., 1995, 66(23): 3117
64 Mcginnis S P, Kelly M A, Hagstrom S B. Insights into the ion-assisted nucleation of diamond on silicon [J]. J. Mater. Res., 1997, 12(12): 3354
65 Robertson J, Gerber J, Sattel S, et al. Mechanism of bias‐enhanced nucleation of diamond on Si [J]. Appl. Phys. Lett., 1995, 66(24): 3287
66 Tang Y H, Golding B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth [J]. Appl. Phys. Lett., 2016, 108(5): 052101
67 Kawarada H, Wild C, Herres N, et al. Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide [J]. J. Appl. Phys., 1997, 81(8): 3490
68 Shintani Y. Growth of highly (111)-oriented, highly coalesced diamond films on platinum (111) surface: A possibility of heteroepitaxy [J]. J. Mater. Res., 1996, 11(12): 2955
69 Lee J S, Liu K S, Lin I N. Direct‐current bias effect on the synthesis of (001) textured diamond films on silicon [J]. Appl. Phys. Lett., 1995, 67(11): 1555
70 Schreck M, Thürer K H, Klarmann R, et al. Influence of the nucleation process on the azimuthal misorientation of heteroepitaxial diamond films on Si(001) [J]. J. Appl. Phys., 1997, 81(7): 3096
71 Thürer K H, Schreck M, Stritzker B, et al. Growth and defects of diamond facets under negative biasing conditions in a microwave plasma CVD process [J]. Diam. Relat. Mater., 1997, 6(8): 1010
72 Thürer K H, Schreck M, Stritzker B. Limiting processes for diamond epitaxial alignment on silicon [J]. Phys. Rev. B, 1998, 57(24): 15454
73 Saravanan A, Huang B R, Sankaran K J, et al. Structural modification of nanocrystalline diamond films via positive/negative bias enhanced nucleation and growth processes for improving their electron field emission properties [J]. J. Appl. Phys., 2015, 117(21): 215307
74 Teng K Y, Chen H C, Tzeng G C, et al. Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films [J]. J. Appl. Phys., 2012, 111(5): 053701
75 Liu C X, Li L L, Wang S F, et al. Effect of bias on structure and tribological properties of diamond-like carbon films [J]. Surf. Technol., 2020, 49(3): 141
75 刘长鑫, 李璐璐, 王少峰 等. 偏压对DLC薄膜结构及摩擦学性能的影响 [J]. 表面技术, 2020, 49(3): 141
76 Saravanan A, Huang B R, Sankaran K J, et al. Bias-enhanced post-treatment process for enhancing the electron field emission properties of ultrananocrystalline diamond films [J]. Appl. Phys. Lett., 2015, 106(11): 140
77 Sankaran K J, Huang B R, Saravanan A, et al. Nitrogen incorporated ultrananocrystalline diamond microstructures from bias-enhanced microwave N2/CH4-plasma chemical vapor deposition [J]. Plasma Processes Polym., 2016, 13(4): 419
78 Ali A M, Egiza M, Murasawa K, et al. Negative bias effects on deposition and mechanical properties of ultrananocrystalline diamond/amorphous carbon composite films deposited on cemented carbide substrates by coaxial arc plasma [J]. Diam. Relat. Mater., 2019, 96: 67
[1] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] 何颖, 李超群, 陈小立, 龙芝梅, 赖嘉琪, 邵斌, 马毅龙, 陈登明, 董季玲. 高性能Sm2Fe17N x 粉体制备的研究进展[J]. 材料研究学报, 2022, 36(5): 321-331.
[5] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[6] 宋小龙, 骆伟静, 南艳丽. 碳纳米角的制备及其应用进展[J]. 材料研究学报, 2021, 35(6): 401-410.
[7] 赵万里, 索红莉, 刘敏, 马麟, 戴银明, 张子立. 用扩散法制备MgB2块材的研究进展[J]. 材料研究学报, 2021, 35(6): 411-418.
[8] 郎振乾, 叶政, 杨健, 黄继华. 单晶高温合金表面缺陷焊接修复的研究进展[J]. 材料研究学报, 2021, 35(3): 161-174.
[9] 李壮, 须秋洁, 刘国金, 张耘箫, 周岚, 邵建中. 基于胶体微球自组装光子晶体的结构生色[J]. 材料研究学报, 2021, 35(3): 175-183.
[10] 熊文文, 何嵩, 郑淞生, 程其进, 沈宏勋, 陈朝. RF-PECVD法制备类金刚石薄膜[J]. 材料研究学报, 2021, 35(2): 154-160.
[11] 俞建忠, 许新玲, 叶松. 载银沸石应用的研究进展[J]. 材料研究学报, 2021, 35(11): 801-810.
[12] 刘主峰, 黄耀东, 杨潇, 贺媛婧, 李昭青, 闫春泽. 基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备[J]. 材料研究学报, 2021, 35(1): 1-6.
[13] 侯志全,郭萌,刘雨溪,邓积光,戴洪兴. 金属间化合物的合成及其催化应用[J]. 材料研究学报, 2020, 34(2): 81-91.
[14] 吴巧凤, 张富, 于月, 张萌, 于华, 樊栓狮. CsPbI2Br无机钙钛矿太阳能电池稳定性的研究进展[J]. 材料研究学报, 2020, 34(11): 811-821.
[15] 周海涛, 汪彦博, 肖旅, 孙京丽, 徐玉棱, 陈舸. 含碳增强体镁基复合材料的制备和界面调控的研究现状及发展趋势[J]. 材料研究学报, 2020, 34(11): 801-810.