Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (3): 183-190    DOI: 10.11901/1005.3093.2021.441
  研究论文 本期目录 | 过刊浏览 |
高比容少层MXene Ti3C2 的制备及其超级电容性能
王益浩1, 吴琼1(), 李鹏飞1, 杨占鑫1, 张洪涛2
1.辽宁工业大学 材料科学与工程学院 锦州 121001
2.辽宁中色新材科技有限公司 锦州 121000
Preparation and Supercapacitor Performance of Few-Layered Ti3C2 with High Specific Capacitance
WANG Yihao1, WU Qiong1(), LI Pengfei1, YANG Zhanxin1, ZHANG Hongtao2
1.School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
2.Liaoning Zhongse Xincai Technology Co. , Ltd, Jinzhou 121000, China
引用本文:

王益浩, 吴琼, 李鹏飞, 杨占鑫, 张洪涛. 高比容少层MXene Ti3C2 的制备及其超级电容性能[J]. 材料研究学报, 2022, 36(3): 183-190.
Yihao WANG, Qiong WU, Pengfei LI, Zhanxin YANG, Hongtao ZHANG. Preparation and Supercapacitor Performance of Few-Layered Ti3C2 with High Specific Capacitance[J]. Chinese Journal of Materials Research, 2022, 36(3): 183-190.

全文: PDF(11011 KB)   HTML
摘要: 

采用微波辅助选择性刻蚀技术制备了原子层间距为1.28 nm的少层Ti3C2,其质量比电容为377.64 F/g,比多层Ti3C2提高了154.27%。对两种Ti3C2电化学储能过程的动力学分析结果表明,少层Ti3C2的电荷存储主要是表面电容的贡献,其贡献率为76.28%。

关键词 无机非金属材料少层Ti3C2微波辅助刻蚀比容量    
Abstract

Microwaves assisted selective etching technique was used to prepare few-layered Ti3C2 with atomic layer spacing of 1.28 nm. The mass specific capacitance is 377.64 F/g, which is 154.27% higher than that of multilayer Ti3C2. The kinetic analysis of two kinds of Ti3C2 electrochemical storage processes shows that the charge storage of few-layered Ti3C2 is mainly contributed by surface capacitance, which is 76.28%.

Key wordsinorganic non-metallic materials    microwave assisted etching    few-layered Ti3C2    specific capacitance
收稿日期: 2021-08-13     
ZTFLH:  TQ152  
基金资助:国家自然科学基金(51971106);锦州市“春芽计划”科技攻关项目
作者简介: 王益浩,男,2000年生,本科生
图1  微波辅助刻蚀六角Ti3AlC2制备的少层Ti3C2的示意图和结构组成
图2  微波辅助刻蚀后Ti3C2的微观形貌
图3  多层Ti3C2和少层Ti3C2的微观结构
图4  多层Ti3C2和少层Ti3C2的超级电容性能图谱
图5  多层Ti3C2和少层Ti3C2的电化学储能过程的动力学分析
1 Luo Y., Tian Y., Tang Y., Yin X., Que W., 2D hierarchical nickel cobalt sulfides coupled with ultrathin titanium carbide (MXene) nanosheets for hybrid supercapacitors [J]. Journal of Power Sources, 2021, 482: 228961
2 Shang M., Chen X., Li B., Niu J., A Fast Charge/Discharge and Wide-Temperature Battery with a Germanium Oxide Layer on a Ti 3 C2 MXene Matrix as Anode [J]. ACS Nano, 2020, 14: 3678
3 Song X., Luo W., Nan Y.. A review for synthesis and applications of carbon nanohorns [J]. Chin. J. Mater. Res., 2021, 35(6): 401
3 宋小龙, 骆伟静, 南艳丽. 碳纳米角的制备及其应用进展 [J]. 材料研究学报,2021, 35(6): 401
4 Qin T., Zhang X., Wang D., Deng T., Wang H., Liu X., Shi X., Li Z., Chen H., Meng X., Zhang W., Zheng W., Oxygen Vacancies Boost delta-Bi 2 O3 as a High-Performance Electrode for Rechargeable Aqueous Batteries [J]. ACS Appl Mater Interfaces, 2019, 11: 2103
5 Ghidiu M., Lukatskaya M.R., Zhao M.Q., Gogotsi Y., Barsoum M.W., Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance [J]. Nature, 2014, 516: 78
6 Li L., Zhang M., Zhang X., Zhang Z., Ti New 3 C2 aerogel as promising negative electrode materials for asymmetric supercapacitors [J]. Journal of Power Sources, 2017, 364: 234
7 Mashtalir O., Naguib M., Mochalin V.N., Dall'Agnese Y., Heon M., Barsoum M.W., Gogotsi Y., Intercalation and delamination of layered carbides and carbonitrides [J]. Nat Commun, 2013, 4: 1716
8 Lukatskaya M.R., Kota S., Lin Z., Zhao M.-Q., Shpigel N., Levi M.D., Halim J., Taberna P.-L., Barsoum M.W., Simon P., Gogotsi Y., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides [J]. Nature Energy, 2017, 2: 17105
9 Jun B. -M., Kim S., Heo J., Park C. M., Her N., Jang M., Huang Y., Han J., Yoon Y., Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications [J]. Nano Research, 2018, 12: 471
10 Li T., Yao L., Liu Q., Gu J., Luo R., Li J., Yan X., Wang W., Pan L., Chen B., Fluorine-Free Synthesis of High-Purity Ti 3 C2T x (T=OH, O) via Alkali Treatment [J]. Angew Chem Int Ed Engl, 2018, 57: 6115
11 Lukatskaya M.R., Mashtalir O., Ren C.E., Dall'Agnese Y., Rozier P., Taberna P.L., Naguib M., Simon P., Barsoum M.W., Gogotsi Y., Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide [J]. Science, 2013, 341: 1502
12 Sang X., Xie Y., Yilmaz D.E., Lotfi R., Alhabeb M., Ostadhossein A., Anasori B., Sun W., Li X., Xiao K., Kent P.R.C., van Duin A.C.T., Gogotsi Y., Unocic R.R., In situ atomistic insight into the growth mechanisms of single layer 2 D transition metal carbides [J]. Nat Commun, 2018, 9: 2266
13 Huang H., Chu X., Su H., Zhang H., Xie Y., Deng W., Chen N., Liu F., Zhang H., Gu B., Deng W., Yang W., Massively manufactured paper-based all-solid-state flexible micro-supercapacitors with sprayable MXene conductive inks [J]. Journal of Power Sources, 2019, 415: 1
14 Li L., Zhang N., Zhang M., Zhang X., Zhang Z., Ti Flexible 3 C2T x /PEDOT:PSS films with outstanding volumetric capacitance for asymmetric supercapacitors [J]. Dalton Transactions, 2019, 48: 1747
15 Ming F., Liang H., Huang G., Bayhan Z., Alshareef H. N., MXenes for Rechargeable Batteries Beyond the Lithium-Ion [J]. Adv Mater, 2021, 33: e2004039
16 Vaghasiya J.V., Mayorga-Martinez C.C., Sofer Z., Pumera M., Flexible MXene-Based Supercapacitors : Influence of an Organic Ionic Conductor Electrolyte on the Performance [J]. ACS Appl Mater Interfaces, 2020, 12: 53039
17 Ma J., Liu C., Ti 3 C2 wrapped Prussian blue skeleton as an anode for potassium-ion battery [J]. Journal of Power Sources, 2021, 484: 229276
18 Li L., Wen J., Zhang X., Progress of Two‐Dimensional Ti 3 C2T x in Supercapacitors [J]. ChemSusChem, 2020, 13: 1296
19 Gao X., Du X., Mathis T.S., Zhang M., Wang X., Shui J., Gogotsi Y., Xu M., Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage [J]. Nat Commun, 2020, 11: 6160
20 Tahir K., Miran W., Jang J., Maile N., Shahzad A., Moztahida M., Ghani A. A., Kim B., Jeon H., Lim S. R., Lee D. S., Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance [J]. Chemosphere, 2020, 268: 128784
21 Lu M., Zhang Y., Chen J., Han W., Zhang W., Li H., Zhang X., Zhang B., K+ alkalization promoted Ca 2 + intercalation in V2CT MXene for enhanced Li storage [J]. Journal of Energy Chemistry, 2020, 49: 358
22 Zhao X, Vashisth A, Prehn E, Sun W, Green MJ, Antioxidants Unlock Shelf-Stable Ti 3 C2T x (MXene) Nanosheet Dispersions [J]. Matter, 2019, 1: 513
23 Natu V., Hart J.L., Sokol M., Chiang H., Taheri M.L., Barsoum M.W., Edge Capping of 2 D-MXene Sheets with Polyanionic Salts To Mitigate Oxidation in Aqueous Colloidal Suspensions [J]. Angew Chem Int Ed Engl, 2019, 58: 12655
24 Hart J.L., Hantanasirisakul K., Lang A.C., Anasori B., Pinto D., Pivak Y., van Omme J.T., May S.J., Gogotsi Y., Taheri M.L., Control of MXenes' electronic properties through termination and intercalation [J]. Nat Commun, 2019, 10: 522
25 Cai Y., Shen J., Yang C.-W., Wan Y., Tang H.-L., Aljarb A.A., Chen C., Fu J.-H., Wei X., K. -W. Huang, Y. Han, S.J. Jonas, X. Dong, V. Tung, Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range [J]. Science Advances, 2020, 6: eabb5367
26 Pan Z., Ji X., Facile synthesis of nitrogen and oxygen co-doped C@Ti 3 C2 MXene for high performance symmetric supercapacitors [J]. Journal of Power Sources, 2019, 439: 227068
27 Bak S-M, Qiao R M, Yang W L. Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide [J]. Adv Energy Mater, 2017, 7(20): 1700959
28 Yang Z., Wu Q., Ren Y., et al. Massive preparation and supercapacitor performance of layered Ti3C2 [J]. Chin. J. Mater. Res., 2020, 34(11): 861
28 杨占鑫, 吴 琼, 任奕桥 等. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861
29 Liu S., Hu F., Shao W., Zhang W., Zhang T., Song C., Yao M., Huang H., Jian X.. A novel strategy of in situ trimerization of cyano groups between the Ti3C2T x (MXene) interlayers for high-energy and high-power sodium-ion capacitors [J]. Nano-Micro Letters, 2020, 12: 135
30 Wu Q., Ren Y., Li P., Wang Y., Yang Z., Qu K., Qi G., Chen S., Wu F., MXene titanium carbide with high specific capacitance fabricated by microwave-assisted selective etching [J]. Applied Physics A, 2021, 127: 360
31 Wu Q., Wang Y., Li P., Chen S., Wu F.. Electrochemical performance and charge storage mechanism of few-layer MXene titanium carbide for supercapacitors [J]. Journal of The Electrochemical Society, 2021, 168(9): 090549
32 Wu Q., Wang Y., Li P., Chen S., Wu F.. Microwave-assisted synthesis of few-layered MXene Ti3C2 with high specific capacitance and low impedance for supercapacitor [J]. Applied Physics A, 2021, 127(11): 822
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.