Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (4): 261-270    DOI: 10.11901/1005.3093.2021.236
  研究论文 本期目录 | 过刊浏览 |
微量Ce元素对高铬高钴型马氏体耐热钢力学性能的影响
王琨1,2, 杨仁贤1,2, 蔡欣1, 郑雷刚1(), 胡小强1,2(), 李殿中1,2
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
Effects of Trace Ce on Mechanical Properties of a Ferritic/Martensitic Heat Resistant Steel Containing High Cr and Co
WANG Kun1,2, YANG Renxian1,2, Cai Xin1, ZHENG Leigang1(), HU Xiaoqiang1,2(), LI Dianzhong1,2
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

王琨, 杨仁贤, 蔡欣, 郑雷刚, 胡小强, 李殿中. 微量Ce元素对高铬高钴型马氏体耐热钢力学性能的影响[J]. 材料研究学报, 2022, 36(4): 261-270.
Kun WANG, Renxian YANG, Xin Cai, Leigang ZHENG, Xiaoqiang HU, Dianzhong LI. Effects of Trace Ce on Mechanical Properties of a Ferritic/Martensitic Heat Resistant Steel Containing High Cr and Co[J]. Chinese Journal of Materials Research, 2022, 36(4): 261-270.

全文: PDF(14110 KB)   HTML
摘要: 

在不同条件下对X20Co高钴高铬型马氏体耐热钢进行热处理,用光学显微镜、扫描电镜、X射线衍射仪以及拉伸实验等手段进行表征,研究了微量Ce元素对其微观组织和力学性能的影响。结果表明,在X20Co钢的淬火过程中,添加质量分数为50×10-6 Ce元素能促进M6C型碳化物沿晶析出,阻碍晶界迁移,使奥氏体晶粒细化;在回火过程中能抑制M23C6型碳化物沿晶界聚集长大。同时,添加50×10-6 Ce元素对X20Co高钴高铬型马氏体耐热钢的室温硬度、室温强度、高温瞬时拉伸强度没有显著的影响,但是使其室温韧性、塑性和高温塑性显著改善。

关键词 金属材料稀土耐热钢热处理组织韧塑性    
Abstract

High Co and Cr containing martensitic heat resisting steels of X20Co without and with trace Ce addition were heat treated under different conditions, then the effect of trace Ce on the microstructure and mechanical properties of the steels were investigated by means of optical microscope, scanning electron microscope, X-ray diffractometer and tensile tester. The results show that in the quenching process, the addition of 50×10-6 Ce can promote the precipitation of M6C type carbides along the grain, therewith hinder the grain boundary migration, and make the refinement of austenite grains; As a consequence, the accumulation and growth of M23C6 type carbides along grain boundaries can be inhibited during tempering process. At the same time, the addition of 50×10-6 Ce has no significant effect on the hardness, strength and high temperature instantaneous tensile strength, but the toughness and plasticity at room temperature as well as the high temperature plasticity are significantly improved for the high Co and Cr containing martensitic steel X20Co.

Key wordsmetallic materials    rare earth    heat resistant steel    microstructure    toughness and plasticity
收稿日期: 2021-04-15     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(51871212);国家重点研发计划(2020YFB2006800);中国科学院青年创新促进会人才专项(2017237);中国科学院王宽诚率先人才计划“产研人才扶持项目”,中国科学院战略性先导专项(XDC04000000);江西省重大科技专项(20194ABC28011)
作者简介: 王琨,男,1995年生,硕士生
SteelCSiMnPSCrCoMoWVNbCeO
X20Co0.260.210.57≤0.005≤0.0019.7910.043.045.900.210.06-0.0010
X20CoRE0.260.210.22≤0.005≤.0029.8810.063.065.930.220.070.0050.0008
表1  X20Co和X20CoRE耐热钢的成分
图1  X20Co和X20CoRE耐热钢在不同温度淬火后的组织
图2  X20Co和X20CoRE耐热钢不同温度淬火后的XRD谱
图3  X20Co和X20CoRE耐热钢在不同温度淬火后的平均晶粒尺寸
图4  X20Co和X20CoRE耐热钢在不同温度回火后的SEM照片
PhaseFeCrCoWMoC
Alloy matrix of X20Co67.1110.619.874.022.694.79
Alloy matrix of X20CoRE67.2010.409.865.503.083.96
Bulk precipitates in X20Co30.018.224.3035.4114.267.11
Bulk precipitates in X20CoRE32.728.194.9133.1512.717.83
Dispersed precipitates in X20Co53.169.827.5916.256.866.02
Dispersed precipitates in X20CoRE52.0410.477.4115.006.736.66
表2  实验钢中的析出相和基体的SEM-EDS能谱分析结果
图5  X20Co 和X20CoRE耐热钢在不同温度回火后的XRD谱
图6  X20Co和X20CoRE耐热钢的室温力学性能
图7  X20Co和X20CoRE耐热钢的高温拉伸性能
图8  X20Co耐热钢中析出相的质量分数随温度的变化
图9  X20Co和X20CoRE耐热钢高温拉伸断口的形貌
1 Yan P, Liu Z D, Bao H S, Weng Y Q, Liu W. Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions [J]. Mater. Sci. Eng., 2013, 588: 22
doi: 10.1016/j.msea.2013.09.033
2 Guo C B, Long S Y, Liao H M. Research of high chromium and cobalt refractory steel [J]. Mater. Rep., 2008: 22: 423
2 郭存宝, 龙思远, 廖慧敏. 高铬高钴耐热钢的研究 [J]. 材料导报, 2008: 22: 423
3 Qiu Q Z. Study on a high cobalt and chromium containing die steel for the magnesium alloy die casting [D]. Guangzhou: South China University of Technology, 2007: 10
3 邱庆忠. 一种高钴高铬压铸镁合金用模具钢的研究 [D]. 广州: 华南理工大学, 2007: 10
4 Huang X Q, Li P J, Liu S X, Cao D B, Peng C. The wear mechanism of the chamber and plunger materials of hot chamber die casting machine for magnesium alloy [J]. Foundry, 2001, 50: 187
4 黄相全, 李培杰, 刘树勋, 曹大本, 彭 程. 镁合金热室压铸机压射室材料摩擦磨损机制研究 [J]. 铸造, 2001, 50: 187
5 Hu X Q, Xiao N M, Luo X H, Li D Z. Transformation Behavior of Precipitates in a W-alloyed 10 wt pct Cr Steel for Ultra-supercritical Power Plants [J]. J. Mater. Sci. Technol., 2010, 26: 817
6 Li S Z, Eliniyaz Z, Dong X P, Shen Y Z, Zhang L T, Shan A D. Effect of stress on microstructural evolution and mechanical properties of 12Cr3W3Co steel during aging and short-term creep [J]. Mater. Sci. Eng., 2013, 580: 51
doi: 10.1016/j.msea.2013.05.030
7 Xue S, Yang T, Guo R D, Deng A L, Liu X D, Zheng L X. Crack analysis of Cr-Mo-V-Si medium-carbon alloy steel in casting die [J]. Eng. Fail. Anal., 2021, 120: 105083
doi: 10.1016/j.engfailanal.2020.105083
8 Du N Y, Liu H W, Fu P X, Liu H H, Sun C, Cao Y F, Li, DZ. Microstructural stability and softening resistance of a novel hot-work die Steel [J]. Crystals, 2020, 10: 239
doi: 10.3390/cryst10040239
9 Chen P F. A review on the behavior of the addition of rare-earth in steel [J]. Acta Metall. Sin., 1978, 14: 188
9 陈佩芳. 稀土金属在钢中的应用 [J]. 金属学报, 1978, 14: 188
10 Du T. Physical-chemistry effect of rare earth elements on metallic materials [J]. Acta Metall. Sin., 1997, 33: 69
10 杜 挺. 稀土元素在金属材料中的一些物理化学作用[J]. 金属学报, 1997, 33: 69
11 Pan F, Zhang J, Chen H L, et al. Effects of rare earth metals on steel microstructures [J]. Materials, 2016, 9: 417
doi: 10.3390/ma9060417
12 Xiong H H, Zhang H N. First-principles investigation on partitioning behavior of rare earth elements between alpha-Fe and Fe3C [J]. Acta Phys. Sin., 2016, 65: 248101
doi: 10.7498/aps.65.248101
12 熊辉辉, 张慧宁. 稀土元素在α-Fe和Fe3C中分配行为的第一性原理研究[J]. 物理学报, 2016, 65: 248101
13 Lan J, He J, Ding W, Wang Q, Zhu Y. Effect of rare earth metals on the microstructure and impact toughness of a cast 0.4C-5Cr-1.2Mo-1.0V Steel [J]. ISIJ Int., 2000, 40: 1275
doi: 10.2355/isijinternational.40.1275
14 Hamidzadeh M A, Meratian M, Saatchi A. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel [J]. Mater. Sci. Eng. A, 2013, 571: 193
15 You Y, Yan J H, Yan M F, Zhang C S, Chen H T, Wang Y X, Zhang Y X, Wang C H. La interactions with C and N in bcc Fe from first principles [J]. J. Alloys Compd., 2016, 688: 261
doi: 10.1016/j.jallcom.2016.07.015
16 Nunes F C, Dille J, Delplancke J L, Almeida L H. Yttrium addition to heat-resistant cast stainless steel [J]. Scripta Mater., 2006, 54: 1553
doi: 10.1016/j.scriptamat.2006.01.024
17 Chen R C, Wang Z G, He J G, Zhu F S, Li C H. Effects of Rare Earth Elements on Microstructure and Mechanical Properties of H13 Die Steel [J]. Metals, 2020, 10: 918
doi: 10.3390/met10070918
18 Xu Y W, Song S H, Wang J W. Effect of rare earth cerium on the creep properties of modifified 9Cr-1Mo heat-resistant steel [J]. Mater. Lett., 2015, 161: 616
doi: 10.1016/j.matlet.2015.09.051
19 Hu X Q, Wang K, Zheng L G, Li D Z. A high chromium and cobalt containing rare-earth heat resistant steel and its preparation method [P]. China, 202011269899.9, 2020-11-13
19 胡小强, 王琨, 郑雷刚, 李殿中. 一种高Cr-高Co型稀土耐热钢合金材料及其制备方法 [P]. 中国, 202011269899.9, 2020-11-13
20 Rios P R, Siciliano F J, Sandim H RZ, Plaut R L, Padilha A F. Nucleation and growth during recrystallization [J]. Mater. Res. 2005, 8: 225
doi: 10.1590/S1516-14392005000300002
21 Chen L, Ma X, Wang L, et al. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr-11Ni austenitic heat-resistant stainless steel [J]. Mater. Des., 2011, 32: 2206
doi: 10.1016/j.matdes.2010.11.022
22 Boccalini M, Correa A V O, Goldenstein H. Rare earth metal induced modifification of γ-M2C, γ-M6C, and γ-MC eutectics in as cast M2 high speed steel [J]. J. Mater. Sci. Technol., 1999, 15: 621
doi: 10.1179/026708399101506355
23 Hufenbach J, Helth A, Lee M H, Wendrock H, Giebeler L, Choe C Y, Kim K H, Kühn U, Kim T S, Eckert J. Effect of cerium addition on microstructure and mechanical properties of high-strength Fe85Cr4Mo8V2C1 cast steel [J]. Mater. Sci. Eng. A, 2016, 674: 366
24 Knutsen R D, Lang C I, Basson J A. Discontinuous cellular precipitation in a Cr-Mn-N steel with niobium and vanadium additions [J] Acta Mater., 2004, 52: 2407
doi: 10.1016/j.actamat.2004.01.031
25 Voice W E, Faulkner R G. The discontinuous precipitation of M23C6 in Nimonic 80A [J]. J. Mater. Sci., 1987, 22: 4221
doi: 10.1007/BF01132012
26 Yi Y L, Liang Y L, Tan Q B. Bainite isothermal transformation of Si-Mn-Mo alloy by phase structure factor calculation under different rare earth contents [J], Rare Metals, 2014, 33: 427
doi: 10.1007/s12598-014-0325-0
27 Liang Y L, Yi Y L, Long S L, Tan QB. Effect of rare earth elements on isothermal transformation kinetics in Si-Mn-Mo bainite steels [J]. J. Mater. Eng. Perform., 2014, 23: 4251
doi: 10.1007/s11665-014-1181-7
28 Torkamani H, Raygan S, Garcia-Mateo C, Rassizadehghani J, Palizdar Y, San-Martin D. Evolution of pearlite microstructure in low-carbon cast microalloyed steel due to the addition of La and Ce [J]. Metall. Mater. Trans. A, 2018, 49: 4495
29 Wang H Y, Gao X Y, Ren H P, Chen S M, Yao Z F. Diffusion coeffificients of rare earth elements in fcc Fe: A first-principles study [J]. J. Phys. Chem. Solids., 2018, 112: 153
doi: 10.1016/j.jpcs.2017.09.025
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.