Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (4): 271-277    DOI: 10.11901/1005.3093.2021.188
  研究论文 本期目录 | 过刊浏览 |
惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响
陈铮1, 杨芳1, 王成2,3(), 杜瑶2, 卢壹梁2, 朱圣龙2,4,5, 王福会4,5
1.辽宁工程技术大学材料科学与工程学院 阜新 123000
2.中国科学院金属研究所师昌绪先进材料创新中心 沈阳 110016
3.江苏集萃道路工程技术与装备研究所有限公司 徐州 220005
4.东北大学材料科学与工程学院 沈阳 110016
5.沈阳材料科学国家研究中心 沈阳 110016
Effect of Inorganic Fillers on High Temperature Oxidation Resistance of Nano-Al/Al2O3 Modified Organic Silicone Coatings
CHEN Zheng1, YANG Fang1, WANG Cheng2,3(), DU Yao2, LU Yiliang2, ZHU Shenglong2,4,5, WANG Fuhui4,5
1.Liaoning Technical University, College of Materials Science & Engineering, Fuxin 123000, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Jiangsu JITRI Road Engineering Technology and Equipment Research Institute Co. Ltd., Xuzhou 220005, China
4.School of Materials Science and Engineering, Northeastern University, Shenyang 110189, China
5.Shenyang National Laboratory for Materials Science, Shenyang 110016, China
引用本文:

陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
Zheng CHEN, Fang YANG, Cheng WANG, Yao DU, Yiliang LU, Shenglong ZHU, Fuhui WANG. Effect of Inorganic Fillers on High Temperature Oxidation Resistance of Nano-Al/Al2O3 Modified Organic Silicone Coatings[J]. Chinese Journal of Materials Research, 2022, 36(4): 271-277.

全文: PDF(7725 KB)   HTML
摘要: 

本文研究了纳米ZrO2、亚微米碳化硅、微米玻璃粉(软化点450℃)填料含量对304不锈钢表面纳米Al/Al2O3改性有机硅涂层的600℃高温氧化行为的影响。在1000 h氧化测试过程中,不锈钢样品表面涂层未出现剥落,未观察到基体氧化膜,说明涂层具有良好的抗氧化性能。对氧化后样品的显微观察表明,ZrO2、SiC和玻璃粉质量分数分别为7%、7%和3%时的涂层中未出现微孔,而玻璃粉质量分数为7%的两种涂层中则出现了大量的微孔。相应地,前者的氧化增重也仅为后两者的约60%,这说明减少玻璃粉的添加量,可消除涂层微孔,有利于提高涂层的抗氧化性能。

关键词 材料失效与保护耐高温氧化纳米填料有机硅304不锈钢    
Abstract

Paints based on nano Al/Al2O3 modified silicone resin coupled with fillers of various amounts of inorganic powders i.e., nano-ZrO2, sub-micro-SiC and micro-glass of softening point 450℃, were prepared and applied on 304 stainless steels. Then the oxidation test of the coated steels was carried out in air at 600℃ for 1000 h in order to reveal the effect of the fillers on the oxidation resistance of nano Al/Al2O3 modified silicone resin paints. Results show that all the test paints exhibited excellent oxidation resistance, while no spallation of the paints and little oxidation of the substrate beneath the paints were observed after oxidation test. It is worth noting that few micropore was observed in the tested paints coupled with 7% ZrO2, 7% SiC and 3% glass (in mass fraction), but there exist obvious micropores in the other two paints coupled with 7% glass. Moreover, the mass gain of the former was only about 60% of those of the latter two. Therefore, it is reasonable to conclude that by coupling with lower mass fraction of glass powder, the formation of micropores in the paints may be inhibited, as a result, the oxidation resistance of the paints can further be enhanced.

Key wordsfailure and protection of materials    anti-high temperature oxidation    nano filler    organosilicon    304 stainless steel
收稿日期: 2021-03-18     
ZTFLH:  TG174  
基金资助:国家重点研发计划(2018YFB2003601)
作者简介: 陈铮,男,1994年生,硕士生
ElementCSiMnPSCrNiFe
Content0.060.871.240.010.00218.008.01Bal.
表1  304SS的化学组成(%,质量分数)
SamplePRPORn-Aln-ZrO2GlassSiCn-Al2O3
1#2149103773
2#2149107373
3#2149107733
表2  纳米Al/Al2O3改性有机硅涂料组成(%,质量分数)
图1  304SS和涂层在600℃的氧化动力学曲线
图2  304SS基体与1#, 2#, 3#涂层在600℃氧化1000 h后的XRD谱
图3  304SS在600℃氧化1000 h后的SEM表面和截面形貌
图4  1#(a, b, c)、2#(d, e, f)、3#(g, h, i)涂层原始SEM的表面和截面形貌
图5  1#(a, b) 、2#(c, d) 、3#(e, f)涂层在600℃氧化5 min后的SEM表面和截面形貌
图6  1#(a, b)、2#(c, d)、3#(e, f)涂层在600℃氧化1000h后的SEM表面和截面形貌
1 Du Y, Wang C, Zhu S L, et al. High temperature oxidation and electrochemical corrosion behavior of al nano-particle modified silicone coating on 304 stainless steel [J]. Chinese Journal of Materials Research, 2019, 33(12):942
1 杜 瑶, 王 成, 朱圣龙 等. 304不锈钢表面纳米铝改性有机硅涂层的高温氧化和电化学行为 [J]. 材料研究学报, 2019, 33(12): 942
2 Sun R G, Dai Y H, Liu S F, et al. Silicone polymer heat and water resistant coating [J]. Paint & Coatings Industry, 1995, 2: 1
2 孙荣贵, 戴英华, 刘胜峰. 硅聚合物耐热耐水涂料 [J]. 涂料工业, 1995, 2:1
3 Gao N. Special Coatings [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1986: 168
3 高 南. 特种涂料 [M]. 上海: 上海科学技术出版社, 1986: 168
4 Xia C D, Wu X J, Xu Y L, et al. Study of a heat-resistant coating polymerizing organic-silica resin together with epoxy resin of the curing on the common temperature [J]. Chemistry & Bioengineering, 2002, 19(6): 17
4 夏赤丹, 吴学军, 徐云丽 等. 常温固化环氧有机硅共缩聚树脂耐高温涂料的研究 [J]. 化学与生物工程, 2002, 19(6): 17
5 Mo L X, Yang K, Fang Q, et al. Study and preparation of organosilicon-modified polyester resins heat-resistant coatings [J]. China Coatings, 2017, 32(5): 67
5 莫立新, 杨 凯, 方 倩 等. 有机硅改性聚酯树脂耐温涂料的研制 [J]. 中国涂料, 2017, 32(5): 67
6 Wang J, Sun Y J, Yin X X, et al. Development of organosilicon high temperature resistant coating [J]. Modern Paint & Finishing, 2007, 10(9): 22
6 王 军, 孙友军, 殷宪霞 等. 有机硅耐高温涂料的研制 [J]. 现代涂料与涂装, 2007, 10(9): 22
7 Zou M, Wang D, Zhao L, et al. Room-temperature curing high-temperature (400℃) resistant coatings prepared by organic silicone and polysilazane [J]. Surface Technology, 2018, 47(5): 83
7 邹 铭, 王 丹, 赵 莉 等. 常温固化耐高温400℃的有机硅-聚硅氮烷涂料 [J]. 表面技术, 2018, 47(5): 83
8 Liu H Y, Zhang S. Development of organosilicon high temperature resistant coating [J]. Silicone Material, 2008(6): 369
8 刘宏宇, 张 松. 有机硅耐高温涂料的研制 [J]. 有机硅材料, 2008(6): 369
9 Bai H Y, Jia M Q, Wu W, et al. In-situ modification of nm SiO2 and its application in the heat-resisting coating [J]. Surface Technology, 2003(6): 59
9 白红英, 贾梦秋, 毋 伟 等. 纳米SiO2的原位改性及在耐热涂料中的应用 [J]. 表面技术, 2003(6): 59
10 Guo Z B, Liu J M, Fan H L, et al. Effect of pigments and fillers on comprehensive properties of epoxy modified organosilicon high temperature resistant coatings [J]. Modern Paint & Finishing, 2007, 10(3): 13
10 郭中宝, 刘杰民, 范慧俐 等. 颜填料对环氧改性有机硅耐高温涂料综合性能的影响 [J]. 现代涂料与涂装, 2007, 10(3): 13
11 Lian W Z, Zhang G L, Ma C F, et al. Preparation and properties of high temperature resistant anticorrosive and thermal insulation coatings [J]. Polymeric Materials Science and Engineering, 2017, 33(6): 152
11 廉卫珍, 张国梁, 马春风 等. 耐高温防腐隔热涂料的制备与性能 [J]. 高分子材料科学与工程, 2017, 33(6): 152
12 Jovanovic J D, Govedarica M N, Dvornic P R, et al. The thermogravimetric analysis of some poly siloxanes [J]. Polymer Degradation & Stability, 1998, 61(1): 87
13 Mitra S K, Roy S K, Bose S K. Influence of superficial coating of CeO2 on the oxidation behavior of AISI 304 stainless steel [J]. Oxidation of Metals, 1993, 39(3-4): 221
doi: 10.1007/BF00665613
14 Huang W R. Development of silicone material market and product (continued sixteen) [J]. Silicone Material and Application, 1998, 12(1): 8
14 黄文润. 有机硅材料的市场与产品开发(续十六) [J]. 有机硅材料及应用, 1998, 12(1): 8
15 Min C Y, Huang Y D, Song H J, et al. Synthesis of high temperature resistant hybrid silicone resin and high temperature mechanical properties of composite materials [J]. Journal of Solid Rocket Technology, 2011, 34(4): 520
15 闵春英, 黄玉东, 宋浩杰 等. 耐高温杂化有机硅树脂的合成及复合材料的高温力学性能 [J]. 固体火箭技术, 2011, 34(4): 520
16 Mathivanan L, Radhakrishna S. Heat-resistant anti-corrosive paint from epoxy-silicone vehicles [J]. Anti Corrosion Methods & Materials, 1997, 44(6): 400
17 Zhang H, Zhang T, Shao Y Q, et al. A comparative study on the protective effect of different coatings on 304 stainless steel at high temperature [J]. Heat Treatment of Metals, 2012, 37(2): 96
17 张 浩, 张 腾, 邵艳群 等. 不同涂层对304不锈钢高温防护效果的对比研究 [J]. 金属热处理, 2012, 37(2): 96
18 Seybolt A U. Observations on the Fe-Cr-O system [J]. Journal of Electrochemical Society, 1960, 107(3): 147
doi: 10.1149/1.2427643
19 Wang Z W, Gong X T, Xie X. High temperature oxidation behavior of pure Cr at 650℃ [J]. Heat Treatment of Metals, 2017, 42(3): 93
19 王志武, 龚雪婷, 谢 兴. 纯铬的650℃高温氧化行为 [J]. 金属热处理, 2017, 42(3): 93
20 Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemistry Industry Press, 2003
20 李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003
[1] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[2] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[9] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[10] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[11] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[12] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[13] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[14] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[15] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.