Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (4): 250-260    DOI: 10.11901/1005.3093.2021.275
  研究论文 本期目录 | 过刊浏览 |
淬火冷却速率对海洋平台用Ni-Cr-Mo-B钢性能的影响
张守清1,2, 胡小锋1(), 杜瑜宾1,2, 姜海昌1, 庞辉勇3, 戎利建1
1.中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.舞阳钢铁有限责任公司 平顶山 462500
Effect of Quenching Cooling Rate on Mechanical Properties of a Ni-Cr-Mo-B Steel for Offshore Platform
ZHANG Shouqing1,2, HU Xiaofeng1(), DU Yubin1,2, JIANG Haichang1, PANG Huiyong3, RONG Lijian1
1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Wuyang Iron and Steel Co. Ltd., Pingdingshan 462500, China
引用本文:

张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 淬火冷却速率对海洋平台用Ni-Cr-Mo-B钢性能的影响[J]. 材料研究学报, 2022, 36(4): 250-260.
Shouqing ZHANG, Xiaofeng HU, Yubin DU, Haichang JIANG, Huiyong PANG, Lijian RONG. Effect of Quenching Cooling Rate on Mechanical Properties of a Ni-Cr-Mo-B Steel for Offshore Platform[J]. Chinese Journal of Materials Research, 2022, 36(4): 250-260.

全文: PDF(30162 KB)   HTML
摘要: 

使用热膨胀仪、SEM电镜、EBSD、硬度、拉伸和冲击等观察和检测手段,研究了淬火冷却速率对海洋平台用Ni-Cr-Mo-B钢的显微组织、有效晶粒尺寸(EGS)和力学性能的影响。结果表明,不同冷却速率的合金钢,其显微组织包括板条马氏体(LM)、板条贝氏体(LB)、粒状贝氏体(GB)和F(铁素体)。随着淬火冷却速率的降低合金钢的显微组织分别为LM(>20℃/s)、LM/LB(20~2℃/s)、LB(2~1℃/s)、LB/GB(1~0.2℃/s)、GB/F(0.2~0.02℃/s),其硬度由100℃/s时的393HV逐渐降低至0.02℃/s时的291HV。回火后合金钢的屈服强度由水冷的836 MPa降低至炉冷的726 MPa,而延伸率几乎不变,约为20%。油冷合金钢的-60℃冲击功最高(199 J),水冷次之(54 J),空冷和炉冷合金钢的最低(<30 J)。其原因是,油冷合金钢具有LMT/LBT混合组织,较小的EGS (1.6 μm)对解理裂纹的阻碍作用较强;而空冷、炉冷合金钢的组织分别为GBT/LBT、GBT/F,其EGS较大(分别为2.4和2.8 μm),对解理裂纹的阻碍作用较弱。

关键词 金属材料Ni-Cr-Mo-B钢显微组织冷却速率有效晶粒尺寸冲击功    
Abstract

The effect of quenching cooling rate on the microstructure, effective grain size (EGS) and mechanical properties of a Ni-Cr-Mo-B steel for offshore platform was investigated by means of dilatometer, SEM, EBSD, in combination with hardness, tensile and impact tests. The results show that the microstructures of the steel by different cooling rates mainly include lath martensite (LM), lath bainite (LB), granular bainite (GB) and ferrite (F). With the decrease of cooling rate the microstructures of the steel can be LM (>20℃/s), LM/LB (20~2℃/s), LB (2~1℃/s), LB /GB (1~0.2℃/s) and GB/F (0.2~0.02℃/s). Meanwhile, the hardness gradually decreases from 393HV by 100℃/s to 291HV by 0.02℃/s. After tempered, the yield strength decreases from 836 MPa for water-cooled steel to 726 MPa for furnace-cooled steel, while the elongation almost keeps constant around about 20%. Impact energy at -60℃ for oil-cooled steel is the highest about 199 J, followed by water-cooled steel (54 J), and the air-cooled and furnace-cooled steels exhibit the lowest impact energy (<30 J). This is because the microstructure of oil-cooled steel is LMT/LBT, which has the smallest EGS (1.6 μm) and the strongest effect of hindering the crack growth. However, the air-cooled and furnace-cooled steels present microstructures GBT/LBT and GBT/F respectively, which show the larger EGS (2.4 and 2.8 μm) and the weaker effect of hindering the crack growth.

Key wordsmetallic materials    Ni-Cr-Mo-B steel    microstructure    cooling rate    effective grain size    impact energy
收稿日期: 2021-04-29     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划(2016YFB0300601);辽宁省兴辽英才计划项目(XLYC1907143);中国科学院战略重点研究项目(XDC04000000);辽宁省自然科学基金(2020-MS-008)
作者简介: 张守清,男,1993年生,博士
CNiMnMoCrBSiNbVSPFe
0.131.260.950.411.020.00110.170.0220.0410.0030.014Bal.
表1  实验钢的化学成分
图1  实验钢的热处理工艺示意图
图2  不同冷却速率实验钢的低倍SEM照片
图3  不同组织局部放大的高倍SEM照片
图4  回火处理后不同冷却方式实验钢的SEM照片
图5  实验钢在630℃回火时碳化物体积分数随保温时间的变化
图6  实验钢的CCT曲线
图7  不同冷却方式实验钢的EBSD晶界分布
图8  回火后不同冷却方式实验钢的EBSD晶界分布
图9  实验钢的原奥氏体晶粒尺寸、回火前后的有效晶粒尺寸与冷却方式的关系
图10  回火态实验钢的力学性能与冷却方式的关系
图11  回火后不同冷却方式实验钢的冲击断口SEM照片
1 Liu Z Y, Tang S, Chen J, et al. Latest progress on development and production of steels for offshore platform and their development tendency [J]. Angang Technol., 2015, 1, 1
1 刘振宇, 唐 帅, 陈 俊 等. 海洋平台用钢的研发生产现状与发展趋势[J]. 鞍钢技术, 2015, 1: 1
2 Wu T, Wu D Z, Ye J J, et al. Development of 177.8 mm thickness steel plate for gear rack of jack-up offshore platform [J]. Wide Heavy Plate, 2015, 21(3): 1
2 吴 涛, 吴东召, 叶建军 等. 自升式海洋平台齿条用177.8 mm厚度钢板的研制开发[J]. 宽厚板, 2015, 21(3): 1
3 Wang Q H, Ye Q B, Wang Z D, et al. Thickness effect on microstructure, strength, and toughness of a quenched and tempered 178 mm thickness steel plate [J]. Metals, 2020, 10(5): 572
doi: 10.3390/met10050572
4 Hong S, Song J, Kim M C, et al. Effects of microstructural variation on charpy impact properties in heavy-section Mn-Mo-Ni low alloy steel for reactor pressure vessel [J]. Met. Mater. Int., 2016, 22(2): 196
doi: 10.1007/s12540-016-5568-x
5 Zhang S Q, Hu X F, Du Y B, et al. Cross-section effect of Ni-Cr-Mo-B ultra-heavy steel plate for offshore platform [J]. Acta Metall. Sin., 2020, 56(9): 1227
5 张守清, 胡小锋, 杜瑜宾 等. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应 [J]. 金属学报, 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
6 Gao Z Y. Study of hot deformtation behavior and microstructure evolution of HSLA ultra-heavy plate steel [D]. Beijing: University of Science and Technology Beijing, 2016
6 高志玉. 特厚板用HSLA钢的热变形行为与组织演变研究 [D]. 北京: 北京科技大学, 2016
7 Takayama N, Miyamoto G, Furuhara T. Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels [J]. Acta Mater., 2018, 145: 154
doi: 10.1016/j.actamat.2017.11.036
8 Wu B B, Wang Z Q, Yu Y S, et al. Thermodynamic basis of twin-related variant pair in high strength low alloy steel [J]. Scr. Mater., 2019, 170: 43
doi: 10.1016/j.scriptamat.2019.05.016
9 Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
doi: 10.1016/j.actamat.2011.12.018
10 Hofer C, Bliznuk V, Verdiere A, et al. High-resolution characterization of the martensite-austenite constituent in a carbide-free bainitic steel [J]. Mater. Charact., 2018, 144: 182
doi: 10.1016/j.matchar.2018.07.011
11 Fonda R W, Spanos G. Effects of cooling rate on transformations in a Fe-9 Pct Ni steel [J]. Metall. Mater. Trans., 2014, 45A: 5982
12 Thompson S W, Colvin D J, Krauss G. Austenite decomposition during continuous cooling of an HSLA-80 plate steel [J]. Metall. Mater. Trans., 1996, 27A: 1557
13 Wen T, Hu X F, Song YY, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel [J]. Acta Metall. Sin., 2014, 50(4): 447
13 温 涛, 胡小锋, 宋元元 等, 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响 [J]. 金属学报, 2014, 50(4): 447
14 Zhou T, Yu H, Wang S Y. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism [J]. Mater. Sci. Eng., 2016, A658: 150
15 Zhou T, Babu R P, Hou Z Y, et al. Precipitation of multiple carbides in martensitic CrMoV steels-experimental analysis and exploration of alloying strategy through thermodynamic calculations [J]. Materialia, 2020, 9: 100630
doi: 10.1016/j.mtla.2020.100630
16 Zhang S Q, Hu X F, Jiang H C, et al. Effect of heat treatment temperature on microstructure and mechanical properties of Cr-Ni-Mo-V steel [J]. Heat Treat. Met., 2018, 43(3): 177
16 张守清, 胡小锋, 姜海昌 等. 热处理温度对Cr-Ni-Mo-V钢组织和力学性能的影响 [J]. 金属热处理, 2018, 43(3): 177
17 Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54(19): 5323
doi: 10.1016/j.actamat.2006.07.009
18 Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater. 2003: 51(6): 1789
doi: 10.1016/S1359-6454(02)00577-3
19 Naylor J P. The influence of the lath morphology on the yield stress and transition temperature of martensitic- bainitic steels [J]. Metall. Mater. Trans., 1979, 10A: 861
20 Wang X Y, Pan T, Wang H, et al. Investigation of the toughness of low carbon tempered martensite in the surface of Ni-Cr-Mo-B ultra-heavy plate steel [J]. Acta Metall. Sin., 2012, 48: 401
doi: 10.3724/SP.J.1037.2011.00698
20 王小勇, 潘 涛, 王华 等. Ni-Cr-Mo-B 超厚钢板表面低碳回火马氏体组织的韧性研究 [J]. 金属学报, 2012, 48: 401
doi: 10.3724/SP.J.1037.2011.00698
21 Peŝiĉka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels [J]. Mater. Sci. Eng., 2004, 387-389 :176
22 Lee K H, Kim M C, Yang W J, et al. Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn-Mo-Ni low alloy steels [J]. Mater. Sci. Eng., 2013, A565: 158
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.