|
|
淬火冷却速率对海洋平台用Ni-Cr-Mo-B钢性能的影响 |
张守清1,2, 胡小锋1( ), 杜瑜宾1,2, 姜海昌1, 庞辉勇3, 戎利建1 |
1.中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 3.舞阳钢铁有限责任公司 平顶山 462500 |
|
Effect of Quenching Cooling Rate on Mechanical Properties of a Ni-Cr-Mo-B Steel for Offshore Platform |
ZHANG Shouqing1,2, HU Xiaofeng1( ), DU Yubin1,2, JIANG Haichang1, PANG Huiyong3, RONG Lijian1 |
1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.Wuyang Iron and Steel Co. Ltd., Pingdingshan 462500, China |
引用本文:
张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 淬火冷却速率对海洋平台用Ni-Cr-Mo-B钢性能的影响[J]. 材料研究学报, 2022, 36(4): 250-260.
Shouqing ZHANG,
Xiaofeng HU,
Yubin DU,
Haichang JIANG,
Huiyong PANG,
Lijian RONG.
Effect of Quenching Cooling Rate on Mechanical Properties of a Ni-Cr-Mo-B Steel for Offshore Platform[J]. Chinese Journal of Materials Research, 2022, 36(4): 250-260.
1 |
Liu Z Y, Tang S, Chen J, et al. Latest progress on development and production of steels for offshore platform and their development tendency [J]. Angang Technol., 2015, 1, 1
|
1 |
刘振宇, 唐 帅, 陈 俊 等. 海洋平台用钢的研发生产现状与发展趋势[J]. 鞍钢技术, 2015, 1: 1
|
2 |
Wu T, Wu D Z, Ye J J, et al. Development of 177.8 mm thickness steel plate for gear rack of jack-up offshore platform [J]. Wide Heavy Plate, 2015, 21(3): 1
|
2 |
吴 涛, 吴东召, 叶建军 等. 自升式海洋平台齿条用177.8 mm厚度钢板的研制开发[J]. 宽厚板, 2015, 21(3): 1
|
3 |
Wang Q H, Ye Q B, Wang Z D, et al. Thickness effect on microstructure, strength, and toughness of a quenched and tempered 178 mm thickness steel plate [J]. Metals, 2020, 10(5): 572
doi: 10.3390/met10050572
|
4 |
Hong S, Song J, Kim M C, et al. Effects of microstructural variation on charpy impact properties in heavy-section Mn-Mo-Ni low alloy steel for reactor pressure vessel [J]. Met. Mater. Int., 2016, 22(2): 196
doi: 10.1007/s12540-016-5568-x
|
5 |
Zhang S Q, Hu X F, Du Y B, et al. Cross-section effect of Ni-Cr-Mo-B ultra-heavy steel plate for offshore platform [J]. Acta Metall. Sin., 2020, 56(9): 1227
|
5 |
张守清, 胡小锋, 杜瑜宾 等. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应 [J]. 金属学报, 2020, 56(9): 1227
doi: 10.11900/0412.1961.2020.00007
|
6 |
Gao Z Y. Study of hot deformtation behavior and microstructure evolution of HSLA ultra-heavy plate steel [D]. Beijing: University of Science and Technology Beijing, 2016
|
6 |
高志玉. 特厚板用HSLA钢的热变形行为与组织演变研究 [D]. 北京: 北京科技大学, 2016
|
7 |
Takayama N, Miyamoto G, Furuhara T. Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels [J]. Acta Mater., 2018, 145: 154
doi: 10.1016/j.actamat.2017.11.036
|
8 |
Wu B B, Wang Z Q, Yu Y S, et al. Thermodynamic basis of twin-related variant pair in high strength low alloy steel [J]. Scr. Mater., 2019, 170: 43
doi: 10.1016/j.scriptamat.2019.05.016
|
9 |
Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
doi: 10.1016/j.actamat.2011.12.018
|
10 |
Hofer C, Bliznuk V, Verdiere A, et al. High-resolution characterization of the martensite-austenite constituent in a carbide-free bainitic steel [J]. Mater. Charact., 2018, 144: 182
doi: 10.1016/j.matchar.2018.07.011
|
11 |
Fonda R W, Spanos G. Effects of cooling rate on transformations in a Fe-9 Pct Ni steel [J]. Metall. Mater. Trans., 2014, 45A: 5982
|
12 |
Thompson S W, Colvin D J, Krauss G. Austenite decomposition during continuous cooling of an HSLA-80 plate steel [J]. Metall. Mater. Trans., 1996, 27A: 1557
|
13 |
Wen T, Hu X F, Song YY, et al. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel [J]. Acta Metall. Sin., 2014, 50(4): 447
|
13 |
温 涛, 胡小锋, 宋元元 等, 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响 [J]. 金属学报, 2014, 50(4): 447
|
14 |
Zhou T, Yu H, Wang S Y. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism [J]. Mater. Sci. Eng., 2016, A658: 150
|
15 |
Zhou T, Babu R P, Hou Z Y, et al. Precipitation of multiple carbides in martensitic CrMoV steels-experimental analysis and exploration of alloying strategy through thermodynamic calculations [J]. Materialia, 2020, 9: 100630
doi: 10.1016/j.mtla.2020.100630
|
16 |
Zhang S Q, Hu X F, Jiang H C, et al. Effect of heat treatment temperature on microstructure and mechanical properties of Cr-Ni-Mo-V steel [J]. Heat Treat. Met., 2018, 43(3): 177
|
16 |
张守清, 胡小锋, 姜海昌 等. 热处理温度对Cr-Ni-Mo-V钢组织和力学性能的影响 [J]. 金属热处理, 2018, 43(3): 177
|
17 |
Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54(19): 5323
doi: 10.1016/j.actamat.2006.07.009
|
18 |
Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater. 2003: 51(6): 1789
doi: 10.1016/S1359-6454(02)00577-3
|
19 |
Naylor J P. The influence of the lath morphology on the yield stress and transition temperature of martensitic- bainitic steels [J]. Metall. Mater. Trans., 1979, 10A: 861
|
20 |
Wang X Y, Pan T, Wang H, et al. Investigation of the toughness of low carbon tempered martensite in the surface of Ni-Cr-Mo-B ultra-heavy plate steel [J]. Acta Metall. Sin., 2012, 48: 401
doi: 10.3724/SP.J.1037.2011.00698
|
20 |
王小勇, 潘 涛, 王华 等. Ni-Cr-Mo-B 超厚钢板表面低碳回火马氏体组织的韧性研究 [J]. 金属学报, 2012, 48: 401
doi: 10.3724/SP.J.1037.2011.00698
|
21 |
Peŝiĉka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels [J]. Mater. Sci. Eng., 2004, 387-389 :176
|
22 |
Lee K H, Kim M C, Yang W J, et al. Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn-Mo-Ni low alloy steels [J]. Mater. Sci. Eng., 2013, A565: 158
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|