Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (10): 786-792    DOI: 10.11901/1005.3093.2021.235
  研究论文 本期目录 | 过刊浏览 |
氮对淬火-配分超级马氏体不锈钢组织和性能的影响
庞阳, 邹德宁(), 李雨浓, 李苗苗, 闫星宇, 何婵
西安建筑科技大学冶金工程学院 西安 710055
Effect of Nitrogen on Microstructure and Properties of Quenched and Partitioned Super Martensitic Stainless Steel
PANG Yang, ZOU Dening(), LI Yunong, LI Miaomiao, YAN Xingyu, HE Chan
School of Metallurgical Engineering, Xi ' an University of Architecture and Technology, Xi ' an 710055, China
引用本文:

庞阳, 邹德宁, 李雨浓, 李苗苗, 闫星宇, 何婵. 氮对淬火-配分超级马氏体不锈钢组织和性能的影响[J]. 材料研究学报, 2022, 36(10): 786-792.
Yang PANG, Dening ZOU, Yunong LI, Miaomiao LI, Xingyu YAN, Chan HE. Effect of Nitrogen on Microstructure and Properties of Quenched and Partitioned Super Martensitic Stainless Steel[J]. Chinese Journal of Materials Research, 2022, 36(10): 786-792.

全文: PDF(14683 KB)   HTML
摘要: 

对超级马氏体不锈钢进行氮合金化并进行淬火-配分工艺处理,使用OM、SEM、TEM、EBSD、BSD、万能试验机和维氏硬度计等手段对不含氮和氮含量(质量分数)分别为0.23%、0.35%的三组超级马氏体不锈钢进行表征,研究了氮元素对其组织和性能的影响。结果表明:氮的添加细化了实验钢中的马氏体板条,使其平均宽度由2.93 μm减小到0.65 μm。在配分处理过程中较高的氮富集度为逆变奥氏体的生成提供了驱动力,并使其稳定到室温。在钢中添加氮元素使钢的强度和塑性均明显比0 N试验钢的高,0.23 N和0.35 N试验钢的抗拉强度和延伸率分别为1510 MPa、24.2%和1215 MPa和35.1%。由此可见,氮合金化有利于提高超级马氏体不锈钢的力学性能。

关键词 金属材料超级马氏体不锈钢Q&P工艺力学性能    
Abstract

A super martensitic stainless steel was alloyed with nitrogen, and afterwards subjected to quenching and partitioning treatments. Then the performance of three super martensite stainless steels without and with 0.23% and 0.35% nitrogen (in mass fraction), respectively were characterized by means of OM, SEM, TEM, EBSD, BSD, universal testing machine and Vickers hardness tester, in terms of the effect of nitrogen on their microstructure and mechanical properties. The results show that: The addition of nitrogen refines the martensitic slats of the steels, and of which the average width was reduced from 2.93 μm to 0.65 μm. During the partitioning treatment, the high nitrogen concentration provides a driving force for the formation of inverting austenite and facilitates its stabilizing at room temperature. The strength and plasticity of the steels alloyed with nitrogen are obviously higher than those of the nitrogen free ones, the tensile strength and elongation of steels with 0.23 N and 0.35 N are 1510 MPa and 24.2%, and 1215 MPa and 35.1%, respectively. It can be seen that nitrogen alloying is beneficial to improve the mechanical properties of super martensitic stainless steel.

Key wordsmetallic materials    super martensitic stainless steel process    Q&P process    mechanical properties
收稿日期: 2021-04-15     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(51774226);山西省科技重大专项(20181101016);山西省科技重大专项(20191102006)
作者简介: 庞阳,男,1995年生,硕士生
No.CrCNiMoMnSiPSNVFe
0N13.050.0245.080.691.980.290.0090.00500Bal.
0.23N13.150.0255.120.712.040.280.0090.0050.230.06Bal.
0.35N13.020.0234.980.712.010.290.0090.0060.350.06Bal.
表1  实验钢的化学成分
图1  实验用钢的Q&P工艺路线
图2  不同氮含量实验钢的金相组织
图3  不同氮含量实验钢的EBSD照片
Test steels0N0.23N0.35N
Volume fraction of austenite / %0.0121.628.3
表2  不同N含量试验钢经Q&P处理后奥氏体的体积分数
图4  0.35N试验钢拉伸断口的EBSD图片
图5  0.35N实验钢的TEM照片
图6  0.35N实验钢的BSD照片
图7  不同N含量试验钢Q&P处理后的力学性能
图8  不同氮含量试验钢的拉伸断口形貌
1 Wang S L. Research progress on composition, process and corrosion properties of super martensitic stainless steels [J]. Continuous Casting, 2019, 44(03): 23
1 王胜利. 超级马氏体不锈钢成分、工艺和腐蚀性能的研究进展 [J]. 连铸, 2019, 44(03): 23
2 Jiang W, Zhao K Y, Ye D, et al. Effect of heat treatment technology on reversed austenite in super martensitic stainless steel [J]. Iron and Steel, 2015, 50(02):70
2 姜 雯, 赵昆渝, 业 冬 等. 热处理工艺对超级马氏体钢逆变奥氏体的影响 [J]. 钢铁, 2015, 50(02): 70
3 Pang Y, Zou D N, Lv X, et al. Effect of manganese on microstructure and properties of high nitrogen super martensitic stainless steel [J]. Iron and Steel, 2021, 56(03): 34
3 庞 阳, 邹德宁, 吕 香 等. 锰对高氮超级马氏体不锈钢组织与性能的影响 [J]. 钢铁, 2021, 56(03): 34
4 Aquino J M, Della Rovere C A, Kuri S E. Localized corrosion susceptibility of supermartensitic stainless steel in welded joints [J]. Corrosion, 2008, 64(1): 35
doi: 10.5006/1.3278459
5 Anselmo N, May J E, Mariano N A, et al. Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater [J]. Materials Science and Engineering A. Structural Materials: Properties, Microstructure and Processing, 2006, A428(1/2): 73
6 Wang H G, Ge Y H, Shi L. Technologies in deep and ultra-deep well drilling: Present status, challenges and future trend in the 13th Five-Year Plan period [J]. Natural Gas Industry, 2017, 37(4): 1
6 汪海阁, 葛云华, 石 林. 深井超深井钻完井技术现状、挑战和"十三五"发展方向 [J]. 天然气工业, 2017, 37(4): 1
7 Guo X T, Ren S J, Peng X M, et al. Strength check of casing in high temperature deep well test in Dagang Oilfield [J]. Well Testing, 2019, 28(06): 38
7 郭秀庭, 任世举, 彭雪梅 等. 大港油田高温深井试油套管强度校核 [J]. 油气井测试, 2019, 28(06): 38
8 Luo Y, Zhang C X, Jin L, et al. Failure analysis on corrosion and perforation of L80 steel oil pipe of an oil well [J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2020, 56(03): 52
8 罗 懿, 张传旭, 金 磊 等. 某油井L80钢油管腐蚀穿孔失效分析 [J]. 理化检验-物理分册, 2020, 56(03): 52
9 Yan Z S, Sun L B, Zhang C Y, et al. Development for seamless oil casing with ultrahigh strength and good toughness for ultra deep oil well [N]. World Metal Report, 2012-07-31(B12)
9 严泽生, 孙徕博, 张传友 等. 超深井用超高强度高韧性石油套管的开发 [N]. 世界金属导报, 2012-07-31(B12)
10 Speer J, Matlock D K, Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Materialia, 2003, 51(9): 2611
doi: 10.1016/S1359-6454(03)00059-4
11 Yuan L, Ponge D, Wittig J, et al. Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe-Cr-C steel [J]. Acta Materialia, 2012, 60: 2790
doi: 10.1016/j.actamat.2012.01.045
12 Kobayashi J, Ina D, Yoshikawa N, et al. Effects of the addition of Cr, Mo and Ni on the microstructure and retained austenite characteristics of 0.2% C-Si-Mn-Nb ultrahigh-strength TRIP-aided bainitic ferrite steels [J]. ISIJ International, 2012, 52(10): 1894
doi: 10.2355/isijinternational.52.1894
13 Jia G X, Wang C Y, Song W Y, et al. Effects of initial quenched martensite on microstructure and mechanical properties of quenching and partitioning steel [J]. Iron and Steel, 2015, 50(05): 69
13 贾国翔, 王存宇, 宋文英 等. 一次淬火马氏体对Q&P钢组织和性能的影响 [J]. 钢铁, 2015, 50(05): 69
14 Liu M, Hu H J, Tian J Y, et al. Integrated austempering and quenching-partitioning process of a bainitic steel [J]. Iron and Steel, 2021, 56(01): 69
14 刘 曼, 胡海江, 田俊羽 等. 贝氏体钢等温淬火和淬火-配分复合工艺 [J]. 钢铁, 2021, 56(01): 69
15 Song Y Y, Cui J P, Rong L J. Microstructure and mechanical properties of 06Cr13Ni4Mo steel treated by quenching-tempering-partitioning process [J]. Journal of Materials Science & amp; Technology, 2016, 32(02): 189
16 Ma X P, Wang L, Liu C M, et al. Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel [J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2012, 539(539): 271
doi: 10.1016/j.msea.2012.01.093
17 Zhou Z A, Fu W T, Zhu Z, et al. Excellent mechanical properties and resistance to cavitation erosion for an ultra-low carbon Cr Mn N stainless steel through quenching and partitioning treatment [J]. International Journal of Minerals Metallurgy and Materials, 2018, 25(05): 547
doi: 10.1007/s12613-018-1601-z
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.