|
|
金属有机框架固定化漆酶的制备及其对邻苯二酚的降解 |
侯语桐1, 李鑫1, 李大伟2, 魏取福1( ) |
1.江南大学 生态纺织教育部重点实验室 无锡 214122 2.南通大学纺织服装学院 南通 226019 |
|
Preparation of Immobilized Laccase onto Framework-like Material of Metal-organic Compound and Its Degradation for Catechol |
HOU Yutong1, LI Xin1, LI Dawei2, WEI Qufu1( ) |
1.Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China 2.College of Textile and Clothing, Nantong University, Nantong 226019, China |
引用本文:
侯语桐, 李鑫, 李大伟, 魏取福. 金属有机框架固定化漆酶的制备及其对邻苯二酚的降解[J]. 材料研究学报, 2022, 36(10): 793-800.
Yutong HOU,
Xin LI,
Dawei LI,
Qufu WEI.
Preparation of Immobilized Laccase onto Framework-like Material of Metal-organic Compound and Its Degradation for Catechol[J]. Chinese Journal of Materials Research, 2022, 36(10): 793-800.
1 |
Schweigert N A, Zehnder A J, Eggen R I. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals [J]. Environmental Microbiology, 2010, 3(2): 81
doi: 10.1046/j.1462-2920.2001.00176.x
|
2 |
Kahru A, Maloverjan A, Sillak H, et al. The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry [J]. Environmental Science and Pollution Research, 2002, 9(1): 27
doi: 10.1007/BF02987422
|
3 |
Wang P, Chang Y Z, Shi L, et al. Efficient removal mechanism of catechol by Fe2O3 modified montmorillonite [J]. Chemical Progress, 2019, 38(2): 1122
|
3 |
王 鹏, 常亚洲, 石 林 等. Fe2O3改性蒙脱土对邻苯二酚的高效去除机理 [J]. 化工进展, 2019, 38(2): 1122
|
4 |
Sun X J, Bai R B, Zhang Y, et al. Laccase-catalyzed oxidative polymerization of phenolic compounds [J]. Applied Biochemistry & Biotechnology, 2013, 171(7): 1673
|
5 |
Li X, Lv P F, Yao Y X, et al. A novel single-enzymatic biofuel cell based on highly flexible conductive bacterial cellulose electrode utilizing pollutants as fuel [J]. Chemical Engineering Journal, 2020, 379: 122316
doi: 10.1016/j.cej.2019.122316
|
6 |
Jin R, Zhang F L. The structure and catalytic reaction mechanism of laccase [J]. Journal of Chinese Lacquer, 2012, 3(4): 6
|
6 |
靳 蓉, 张飞龙. 漆酶的结构与催化反应机理 [J]. 中国生漆, 2012, 31(4): 6
|
7 |
Wang G D, Chen X Y. The properties, functions, catalytic mechanism and applicability of laccase [J]. Chinese Bulletin of Botany, 2003, 20(4): 469
|
7 |
王国栋, 陈晓亚. 漆酶的性质、功能、催化机理和应用 [J]. 植物学通报, 2003, 20(4): 469
|
8 |
Chen M, Wang L, Tan T, et al. Radical Mechanism of Laccase-Catalyzed Catechol Ring-Opening [J]. Acta Physico-Chimica Sinica, 2017, 33(3): 620
doi: 10.3866/PKU.WHXB201612011
|
9 |
Pang R, Li M Z, Zhang C D. Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: Diffusional limitation investigation [J]. Talanta, 2015, 131: 38
doi: 10.1016/j.talanta.2014.07.045
pmid: 25281070
|
10 |
Zhang P. Modified PAN nanofibers immobilized with laccase and catalytic properties [D]. Wuxi: Jiangnan University, 2013
|
10 |
张 平. 改性聚丙烯腈纳米纤维漆酶固定化及催化性能的研究 [D]. 无锡: 江南大学, 2013
|
11 |
Feng Y X. Enzyme immobilization based on metal organic frameworks and its catalytic performance [D]. Shijiazhuang: Hebei University of Science and Technology, 2018
|
11 |
冯玉晓. 基于金属有机框架物酶的固定化及催化性能研究 [D]. 石家庄: 河北科技大学, 2018
|
12 |
Chen B L, Yang Z X, Zhu Y Q, et al. Zeolitic imidazolate framework materials: recent progress in synthesis and applications [J]. Journal of Materials Chemistry A, 2014, 2(40): 16811
doi: 10.1039/C4TA02984D
|
13 |
Liu J W, Chen L F, Cui H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis [J]. Chemical Society reviews, 2014, 43(16): 6011
doi: 10.1039/c4cs00094c
pmid: 24871268
|
14 |
Cui L, Wu J, Li J, et al. Electrochemical Sensor for Lead Cation Sensitized with a DNA Functionalized Porphyrinic Metal-Organic Framework [J]. Analytical Chemistry, 2015, 87(20): 10635
doi: 10.1021/acs.analchem.5b03287
pmid: 26427312
|
15 |
Liang K, Ricco R, Doherty C M, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules [J]. Nat Commun, 2015, 6(1): 7240
doi: 10.1038/ncomms8240
|
16 |
Ke C X, Fan Y L, Su F, et al. Recent advances in enzyme immobilization [J]. Chinese Journal of Biotechnology, 2018, 34(2): 188
|
16 |
柯彩霞, 范艳利, 苏 枫 等. 酶的固定化技术最新研究进展 [J]. 生物工程学报, 2018, 34(2): 188
|
17 |
Shieh F K, Wang S C, Yen C I, et al. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals [J]. Journal of the American Chemical Society, 2015, 137(13): 4276
doi: 10.1021/ja513058h
|
18 |
Li X, Li D W, Zhang Y A, et al. Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor [J]. Nano Energy, 2020, 68: 104308
doi: 10.1016/j.nanoen.2019.104308
|
19 |
Gkaniatsou E, Sicard C, Ricoux R, et al. Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection [J]. Materials Horizons, 2017, 4(1): 55
doi: 10.1039/C6MH00312E
|
20 |
Hu Y L, Dai L M, Liu D H, et al. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs) [J]. Renewable & Sustainable Energy Reviews, 2018, 91: 793
|
21 |
Shieh F K, Wang S C, Leo S Y, et al. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size [J]. Chemistry - A European Journal, 2013, 19(34): 11139
doi: 10.1002/chem.201301560
|
22 |
Li X F, Huang W Q, Tang B, et al. Research advance in synthesis and application of ZIF-90 zeolitic imidazolate frameworks [J]. New Chemical Materials, 2020, 571(4): 18
|
22 |
李旭飞, 黄维秋, 唐 波 等. 沸石咪唑酯骨架材料ZIF-90的合成及应用研究进展 [J]. 化工新型材料, 2020, 571(4): 18
|
23 |
Liang W B, Xu H S, Carraro F, et al. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal-Organic Frameworks [J]. Journal of the American Chemical Society, 2019, 141(6): 2348
doi: 10.1021/jacs.8b10302
pmid: 30636404
|
24 |
Zhang W, Wang C, Peng M, et al. ATP-responsive laccase@ZIF-90 as a signal amplification platform to achieve indirect highly sensitive online detection of ATP in rat brain [J]. Chemical communications (Cambridge, England), 2020, 56(47): 6436
doi: 10.1039/D0CC02021D
|
25 |
Jose T, Hwang Y, Kim D W, et al. Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether [J]. Catalysis Today, 2015, 245: 61
doi: 10.1016/j.cattod.2014.05.022
|
26 |
Xie W, Wan F. Guanidine post-functionalized crystalline ZIF-90 frameworks as a promising recyclable catalyst for the production of biodiesel via soybean oil transesterification [J]. Energy Conversion and Management, 2019, 198: 111922
doi: 10.1016/j.enconman.2019.111922
|
27 |
Zhang D, Fan Y, Li G J, et al. Biomimetic synthesis of zeolitic imidazolate frameworks and their application in high performance acetone gas sensors [J]. Sensors and Actuators B-Chemical, 2020, 302: 127187
doi: 10.1016/j.snb.2019.127187
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|