Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (10): 793-800    DOI: 10.11901/1005.3093.2021.244
  研究论文 本期目录 | 过刊浏览 |
金属有机框架固定化漆酶的制备及其对邻苯二酚的降解
侯语桐1, 李鑫1, 李大伟2, 魏取福1()
1.江南大学 生态纺织教育部重点实验室 无锡 214122
2.南通大学纺织服装学院 南通 226019
Preparation of Immobilized Laccase onto Framework-like Material of Metal-organic Compound and Its Degradation for Catechol
HOU Yutong1, LI Xin1, LI Dawei2, WEI Qufu1()
1.Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
2.College of Textile and Clothing, Nantong University, Nantong 226019, China
引用本文:

侯语桐, 李鑫, 李大伟, 魏取福. 金属有机框架固定化漆酶的制备及其对邻苯二酚的降解[J]. 材料研究学报, 2022, 36(10): 793-800.
Yutong HOU, Xin LI, Dawei LI, Qufu WEI. Preparation of Immobilized Laccase onto Framework-like Material of Metal-organic Compound and Its Degradation for Catechol[J]. Chinese Journal of Materials Research, 2022, 36(10): 793-800.

全文: PDF(6499 KB)   HTML
摘要: 

以金属有机框架材料(ZIF-90)为固定载体,采用内部封装和表面物理吸附两种方法固定漆酶(LAC),分别制备出LAC@ZIF-90和LAC-ZIF-90复合材料,使用扫描电镜(SEM)、激光共聚焦显微镜(CLSM)、X射线衍射(XRD)、傅里叶红外变换光谱(FT-IR)以及荧光分析等手段分析漆酶固定前后的结构和性能,对比分析了游离漆酶和固定漆酶的使用稳定性,根据高效液相色谱(HPLC)研究了固定化漆酶对邻苯二酚的降解性能。结果表明:漆酶分子固定在ZIF-90的表面和内部,分子结构稳定。在最适当的pH值条件下,LAC-ZIF-90和LAC@ZIF-90震荡6 h对邻苯二酚的去除率分别为97%和19.4%。LAC-ZIF-90和LAC@ZIF-90经过5次重复使用后仍具有较高的活力,LAC-ZIF-90重复5次后对邻苯二酚的去除率仍高于78%。

关键词 复合材料金属有机框架材料漆酶固定邻苯二酚降解    
Abstract

Laccase (LAC) was immobilized onto a framework-like material of metal-organic compound (ZIF-90) by means of internal encapsulation and surface physical-adsorption, herewith, two composites of LAC@ZIF-90 and LAC-ZIF-90 were prepared respectively. The structure, property, stability and degradation performance for catechol of the free- and immobilized-laccase were comparatively characterized by means of scanning electron microscopy (SEM), laser confocal electron microscopy (CLSM), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), fluorescence analysis and high performance liquid chromatography (HPLC) etc. The results show that: laccase molecules were fixed on the surface and inside of ZIF-90, and the molecular structure was stable before and after being fixed; the removal rates for catechol by lac-ZIF-90 and LAC@ZIF-90 were 97% and 19.4%, respectively for the solution with proper pH value, whilst by vibrating for 6 h; the lac-ZIF-90 and LAC@ZIF-90 still showed high vitality after repeatedly used for 5 times; it is especially worthy that the removal rate of catechol was higher than 78% even after repeatedly used for 5 times for the lac-ZIF-90.

Key wordscomposits    metal organic framework materials    laccase    immobilization    catechol    degradation
收稿日期: 2021-04-15     
ZTFLH:  TB332  
基金资助:江苏省自然科学基金(BK20180628);中央高校基本科研业务费专项资金(JUSRP51907A);江苏高校优势学科建设工程资助项目(苏政办发[2014]37号)
作者简介: 侯语桐,女,1996年生,硕士生
图1  LAC@ZIF-90和LAC-ZIF-90的合成示意图
图2  ZIF-90、LAC@ZIF-90和LAC-ZIF-90的SEM照片
图3  CLSM显示LAC-ZIF-90(a,b,c)和LAC@ZIF-90(d,e,f)的荧光、明场和重叠图像
图4  ZIF-90、LAC@ZIF-90和LAC-ZIF-90的XRD谱
图5  ZIF-90、LAC@ZIF-90、LAC-ZIF-90和游离LAC的FTIR谱
图6  ZIF-90、LAC@ZIF-90、LAC-ZIF-90和游离LAC的荧光光谱
ParticlesBET Surface area/m2·g-1Langmuir surface area/m2·g-1Pore volume /cm3·g-1Pore size/nm
ZIF-90721.49701104.66000.3384.6218
LAC@ZIF-90525.6278802.79560.2444.4410
LAC-ZIF-90123.4171199.81780.0543.8030
表1  LAC、LAC-ZIF-90和LAC@ZIF-90的孔隙特征
图7  pH值对固定漆酶活性的影响
图8  温度对固定漆酶活性的影响
图9  游离漆酶、固定漆酶以及ZIF-90对邻苯二酚的去除性能
图10  固定漆酶的重复使用性
1 Schweigert N A, Zehnder A J, Eggen R I. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals [J]. Environmental Microbiology, 2010, 3(2): 81
doi: 10.1046/j.1462-2920.2001.00176.x
2 Kahru A, Maloverjan A, Sillak H, et al. The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry [J]. Environmental Science and Pollution Research, 2002, 9(1): 27
doi: 10.1007/BF02987422
3 Wang P, Chang Y Z, Shi L, et al. Efficient removal mechanism of catechol by Fe2O3 modified montmorillonite [J]. Chemical Progress, 2019, 38(2): 1122
3 王 鹏, 常亚洲, 石 林 等. Fe2O3改性蒙脱土对邻苯二酚的高效去除机理 [J]. 化工进展, 2019, 38(2): 1122
4 Sun X J, Bai R B, Zhang Y, et al. Laccase-catalyzed oxidative polymerization of phenolic compounds [J]. Applied Biochemistry & Biotechnology, 2013, 171(7): 1673
5 Li X, Lv P F, Yao Y X, et al. A novel single-enzymatic biofuel cell based on highly flexible conductive bacterial cellulose electrode utilizing pollutants as fuel [J]. Chemical Engineering Journal, 2020, 379: 122316
doi: 10.1016/j.cej.2019.122316
6 Jin R, Zhang F L. The structure and catalytic reaction mechanism of laccase [J]. Journal of Chinese Lacquer, 2012, 3(4): 6
6 靳 蓉, 张飞龙. 漆酶的结构与催化反应机理 [J]. 中国生漆, 2012, 31(4): 6
7 Wang G D, Chen X Y. The properties, functions, catalytic mechanism and applicability of laccase [J]. Chinese Bulletin of Botany, 2003, 20(4): 469
7 王国栋, 陈晓亚. 漆酶的性质、功能、催化机理和应用 [J]. 植物学通报, 2003, 20(4): 469
8 Chen M, Wang L, Tan T, et al. Radical Mechanism of Laccase-Catalyzed Catechol Ring-Opening [J]. Acta Physico-Chimica Sinica, 2017, 33(3): 620
doi: 10.3866/PKU.WHXB201612011
9 Pang R, Li M Z, Zhang C D. Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: Diffusional limitation investigation [J]. Talanta, 2015, 131: 38
doi: 10.1016/j.talanta.2014.07.045 pmid: 25281070
10 Zhang P. Modified PAN nanofibers immobilized with laccase and catalytic properties [D]. Wuxi: Jiangnan University, 2013
10 张 平. 改性聚丙烯腈纳米纤维漆酶固定化及催化性能的研究 [D]. 无锡: 江南大学, 2013
11 Feng Y X. Enzyme immobilization based on metal organic frameworks and its catalytic performance [D]. Shijiazhuang: Hebei University of Science and Technology, 2018
11 冯玉晓. 基于金属有机框架物酶的固定化及催化性能研究 [D]. 石家庄: 河北科技大学, 2018
12 Chen B L, Yang Z X, Zhu Y Q, et al. Zeolitic imidazolate framework materials: recent progress in synthesis and applications [J]. Journal of Materials Chemistry A, 2014, 2(40): 16811
doi: 10.1039/C4TA02984D
13 Liu J W, Chen L F, Cui H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis [J]. Chemical Society reviews, 2014, 43(16): 6011
doi: 10.1039/c4cs00094c pmid: 24871268
14 Cui L, Wu J, Li J, et al. Electrochemical Sensor for Lead Cation Sensitized with a DNA Functionalized Porphyrinic Metal-Organic Framework [J]. Analytical Chemistry, 2015, 87(20): 10635
doi: 10.1021/acs.analchem.5b03287 pmid: 26427312
15 Liang K, Ricco R, Doherty C M, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules [J]. Nat Commun, 2015, 6(1): 7240
doi: 10.1038/ncomms8240
16 Ke C X, Fan Y L, Su F, et al. Recent advances in enzyme immobilization [J]. Chinese Journal of Biotechnology, 2018, 34(2): 188
16 柯彩霞, 范艳利, 苏 枫 等. 酶的固定化技术最新研究进展 [J]. 生物工程学报, 2018, 34(2): 188
17 Shieh F K, Wang S C, Yen C I, et al. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals [J]. Journal of the American Chemical Society, 2015, 137(13): 4276
doi: 10.1021/ja513058h
18 Li X, Li D W, Zhang Y A, et al. Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor [J]. Nano Energy, 2020, 68: 104308
doi: 10.1016/j.nanoen.2019.104308
19 Gkaniatsou E, Sicard C, Ricoux R, et al. Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection [J]. Materials Horizons, 2017, 4(1): 55
doi: 10.1039/C6MH00312E
20 Hu Y L, Dai L M, Liu D H, et al. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs) [J]. Renewable & Sustainable Energy Reviews, 2018, 91: 793
21 Shieh F K, Wang S C, Leo S Y, et al. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size [J]. Chemistry - A European Journal, 2013, 19(34): 11139
doi: 10.1002/chem.201301560
22 Li X F, Huang W Q, Tang B, et al. Research advance in synthesis and application of ZIF-90 zeolitic imidazolate frameworks [J]. New Chemical Materials, 2020, 571(4): 18
22 李旭飞, 黄维秋, 唐 波 等. 沸石咪唑酯骨架材料ZIF-90的合成及应用研究进展 [J]. 化工新型材料, 2020, 571(4): 18
23 Liang W B, Xu H S, Carraro F, et al. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal-Organic Frameworks [J]. Journal of the American Chemical Society, 2019, 141(6): 2348
doi: 10.1021/jacs.8b10302 pmid: 30636404
24 Zhang W, Wang C, Peng M, et al. ATP-responsive laccase@ZIF-90 as a signal amplification platform to achieve indirect highly sensitive online detection of ATP in rat brain [J]. Chemical communications (Cambridge, England), 2020, 56(47): 6436
doi: 10.1039/D0CC02021D
25 Jose T, Hwang Y, Kim D W, et al. Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether [J]. Catalysis Today, 2015, 245: 61
doi: 10.1016/j.cattod.2014.05.022
26 Xie W, Wan F. Guanidine post-functionalized crystalline ZIF-90 frameworks as a promising recyclable catalyst for the production of biodiesel via soybean oil transesterification [J]. Energy Conversion and Management, 2019, 198: 111922
doi: 10.1016/j.enconman.2019.111922
27 Zhang D, Fan Y, Li G J, et al. Biomimetic synthesis of zeolitic imidazolate frameworks and their application in high performance acetone gas sensors [J]. Sensors and Actuators B-Chemical, 2020, 302: 127187
doi: 10.1016/j.snb.2019.127187
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.