|
|
GNP-Ni/Cu复合材料的界面调控和强化机理 |
宗意勋, 李树丰( ), 刘磊, 张鑫, 潘登, 吴代惠玉 |
西安理工大学材料科学与工程学院 西安 710048 |
|
Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites |
ZONG Yixun, LI Shufeng( ), LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu |
School of Materials Science and Engineering, Xi´an University of Technology, Xi´an 710048, China |
引用本文:
宗意勋, 李树丰, 刘磊, 张鑫, 潘登, 吴代惠玉. GNP-Ni/Cu复合材料的界面调控和强化机理[J]. 材料研究学报, 2022, 36(10): 777-785.
Yixun ZONG,
Shufeng LI,
Lei LIU,
Xin ZHANG,
Deng PAN,
Daihuiyu WU.
Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. Chinese Journal of Materials Research, 2022, 36(10): 777-785.
1 |
Zeng Z M. Practical Metal Material Selection Manual [M]. Beijing: China Machine Press, 2012
|
1 |
曾正明. 实用金属材料选用手册 [M]. 北京: 机械工业出版社, 2012
|
2 |
Liu P, Ren F Z, Jia S G. Copper Alloys and Their Applications [M]. Beijing: Chemical Industry Press, 2007
|
2 |
刘 平, 任凤章, 贾淑果. 铜合金及其应用 [M]. 北京: 化学工业出版社, 2007
|
3 |
Park S, Shehzad M A, Khan M F, et al. Effect of grain boundaries on electrical properties of polycrystalline graphene [J]. Carbon, 2017, 112: 142
doi: 10.1016/j.carbon.2016.11.010
|
4 |
Wang D L, Feng Y, Li S, et al. Manufacturing process and property of Al2O3 dispersion strengthened copper-based composite material [J]. Met. Funct. Mater., 2009, (2): 24
|
4 |
王东里, 凤 仪, 李庶 等. Al2O3弥散强化铜基复合材料的制备及性能研究 [J]. 金属功能材料, 2009, (2): 24
|
5 |
Zhang P, Jie J, Gao Y, et al. Preparation and properties of TiB2 particles reinforced Cu-Cr matrix composite [J]. Mater. Sci. Eng., A, 2015, 642: 398
doi: 10.1016/j.msea.2015.07.021
|
6 |
Zhang S L, Yi Z M. High-strength and high-conductivity copper alloys: Designing considerations and their application [J]. Mater. Rev., 2003, (11): 26
|
6 |
张生龙, 尹志民. 高强高导铜合金设计思路及其应用 [J]. 材料导报, 2003, (11): 26
|
7 |
Deng J Q, Wu Y C, Chen Y. Comment on research of high strength and electric conductivity copper (alloy) -based composites [J]. Mater. Rev., 2005, (10): 80
|
7 |
邓景泉, 吴玉程, 陈勇. 高强高导铜(合金)基复合材料强化与物性研究进展 [J]. 材料导报, 2005, (10): 80
|
8 |
Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites [J]. Scripta Mater, 2015: 72
|
9 |
Davis J R. Copper and copper alloys[J]. Corrosion, 2001, 3 (2): 527
|
10 |
Ling Z C, Yan C X, Shi Q N, et al. Recent progress in preparation methods for metal matrix composite materials reinforced with graphene nanosheets [J]. Mater. Rev., 2015, 29 (4): 143
|
11 |
Lv J M, Zhang X H, Xiong D B, et al. Progress and prospect of ultra-conductive copper matrix materials [J]. Mater. China, 2018, 37(6): 453
|
11 |
吕吉敏, 章潇慧, 熊定邦 等. 超高导电铜基材料的研究现状与展望 [J]. 中国材料进展, 2018, 37(6): 453
|
12 |
Song M H, Zhang Y, Li Y. Effect of graphene content on microstructure and thermal conduction properties of graphene/Cu composites [J]. Heilongjiang Science, 2017, 8 (4): 7
|
12 |
宋美慧, 张煜, 李艳. 石墨烯含量对石墨烯/Cu复合材料组织及导热性能的影响 [J]. 黑龙江科学, 2017, 8 (4): 7
|
13 |
Rashad M, Pan F, Tang A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method [J]. Prog. Nat. Sci., 2014, (2): 101
|
14 |
Yang M, Hu L, Tang X, et al. Longitudinal splitting versus sequential unzipping of thick-walled carbon nanotubes: towards controllable synthesis of high-quality graphitic nanoribbons [J]. Carbon, 2016, (110): 480
|
15 |
Arnaud C, Lecouturier F, Mesguich D, et al. High strength-high conductivity double-walled carbon nanotube-copper composite wires [J]. Carbon, 2016, (96): 212
|
16 |
Xue Z W, Wang L D, Zhao P T, et al. Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular level dispersion [J]. Mater. Des., 2012, 34: 298
doi: 10.1016/j.matdes.2011.08.021
|
17 |
Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular level mixing process [J]. Adv. Mater., 2013, 25(46): 6724
doi: 10.1002/adma.201302495
|
18 |
Chen Y, Zhang X, Liu E, et al. Fabrication of three dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism [J]. J. Alloys Compd., 2016, (688): 69
|
19 |
Tang Y, Yang X, Wang R, et al. Enhancement of the mechanical properties of graphene copper composites with graphene-nickel hybrids [J]. Mater. Sci. Eng., A, 2014, 599: 247
doi: 10.1016/j.msea.2014.01.061
|
20 |
Jiang R, Zhou X, Liu Z. Electroless Ni plated graphene for tensile strength enhancement of copper [J]. Mater. Sci. Eng., A, 2017, 679: 323
doi: 10.1016/j.msea.2016.10.029
|
21 |
Liu P, Zhu E F, Yan C X, et al. Strength and electrical properties of graphene reinforced copper matrix composites with different nickel contents [J]. Chinese Journal of Rare Metals, 2018, (7): 735
|
21 |
刘朋, 朱恩福, 闫翠霞 等. 镍含量对铜基石墨烯复合材料力电性能的影响 [J]. 稀有金属, 2018, (7): 735
|
22 |
Nam D H, Cha S I, Lim B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites [J]. Carbon, 2012, 50 (7): 2417
doi: 10.1016/j.carbon.2012.01.058
|
23 |
Xu Z, Buehler M J. Interface structure and mechanics between graphene and metal substrates: a first-principles study [J]. J. Phys.: Condens. Matter., 2010, 22 (48): 485301
doi: 10.1088/0953-8984/22/48/485301
|
24 |
Yan S J, Dai S L, Zhang X Y, et al. Investigating aluminum alloy reinforced by graphene nanoflakes [J]. Mater. Sci. Eng., A, 2014, 612(26): 440
doi: 10.1016/j.msea.2014.06.077
|
25 |
Dieter G E. Mechanical Metallurgy [M]. New York: McGraw-Hill, 1988
|
26 |
Rashad M, Pan F, Asif M, et al. Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) [J]. J. Ind. Eng. Chem., 2014, 20(6): 4250
doi: 10.1016/j.jiec.2014.01.028
|
27 |
Zhang Q, Chen D L. A model for predicting the particle size dependence of the low cycle fatigue life in discontinuously reinforced MMCs [J]. Scripta Mater, 2004, 51(9): 863
doi: 10.1016/j.scriptamat.2004.07.006
|
28 |
Meyers M A, Chawla K K. Mechanical behaviour of materials [M]. Saddle River (NJ): Prentice Hall, 1999
|
29 |
Zhang Z, Chen D L. Consideration of orowan strengthening effect in particulate reinforced metal matrix nanocomposites: a model for predicting their yield strength [J]. Scripta Mater, 2006, 54(7): 1321
doi: 10.1016/j.scriptamat.2005.12.017
|
30 |
Luster J W, Thumann M, Baumann R. Mechanical properties of aluminium alloy 6061-Al2O3 composites [J]. Mater. Sci. Technol., 1993, 9 (10): 853
doi: 10.1179/026708393790171421
|
31 |
Miller W S, Humphreys F J. Strengthening mechanisms in particulate metal matrix composites [J]. Scripta Metallurgica Et Materialia, 1991, 25(1): 33
doi: 10.1016/0956-716X(91)90349-6
|
32 |
Wen P, Tao G, Ren B X, et al. Superplastic deformation mechanism of nanocrystalline copper: a molecular dynamics study [J]. Acta Phys. Sin., 2015, 64(12): 126201
doi: 10.7498/aps.64.126201
|
32 |
闻鹏, 陶钢, 任保祥 等. 纳米多晶铜的超塑性变形机理的分子动力学探讨 [J]. 物理学报, 2015, 64 (12): 126201
|
33 |
Szablewski J, Haimant R. Heat mechanical treatment for copper alloy [J]. Mater. Sci. Technol., 1985, (1): 1053
|
34 |
Zhang P, Li Y, Lei Q, et al. Microstructure and mechanical properties of a Cu-Ni-Ti alloy with a large product of strength and elongation [J]. J. Mater. Res. Technol., 2020, 9 (2): 2299
doi: 10.1016/j.jmrt.2019.12.061
|
35 |
Qian L, Xiao Z, Hu W, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy [J]. Mater. Sci. Eng., A, 2017, 697: 37
doi: 10.1016/j.msea.2017.05.001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|