|
|
开放式氮缺陷氮化碳中空微球用于增强光解水制氢和CO2 还原 |
欧阳杰, 李雪, 祝玉鑫, 曹福, 崔言娟( ) |
江苏科技大学环境化学工程学院 镇江 212100 |
|
Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction |
OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan( ) |
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China |
引用本文:
欧阳杰, 李雪, 祝玉鑫, 曹福, 崔言娟. 开放式氮缺陷氮化碳中空微球用于增强光解水制氢和CO2 还原[J]. 材料研究学报, 2022, 36(2): 152-160.
Jie OUYANG,
Xue LI,
Yuxin ZHU,
Fu CAO,
Yanjuan CUI.
Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. Chinese Journal of Materials Research, 2022, 36(2): 152-160.
1 |
Chen X B , Shen S H , Guo L J , et al . Semiconductor-based photocatalytic hydrogen generation [J]. Chem. Rev., 2010, 110: 6503
|
2 |
Liu X , Inagaki S , Gong J L . Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation [J]. Angew. Chem. Int. Ed., 2016, 55: 14924
|
3 |
Wang C L , Sun Z X , Zheng Y , et al . Recent progress in visible light photocatalytic conversion of carbon dioxide [J]. J. Mater. Chem., 2019, 7A: 865
|
4 |
Zheng Y , Lin L H , Wang B , et al . Graphitic carbon nitride polymers toward sustainable photoredox catalysis [J]. Angew. Chem. Int. Ed., 2015, 54: 12868
|
5 |
Wang X C , Blechert S , Antonietti M . Polymeric graphitic carbon nitride for heterogeneous photocatalysis [J]. ACS Catal., 2012, 2: 1596
|
6 |
Tong Z W , Yang D , Sun Y Y , et al . Tubular G-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer [J]. Small, 2016, 12: 4093
|
7 |
Ye S , Wang R , Wu M Z , et al . A review on g-C3N4 for photocatalytic water splitting and CO2 reduction [J]. Appl. Surf. Sci., 2015, 358: 15
|
8 |
Dong G H , Yang L P , Wang F , et al . Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides [J]. ACS Catal., 2016, 6: 6511
|
9 |
Ling F L , Li W J , Ye L J . The synergistic effect of non-metal doping or defect engineering and interface coupling on the photocatalytic property of g-C3N4: first-principle investigations [J]. Appl. Surf. Sci., 2019, 473: 386
|
10 |
Naseri A , Samadi M , Pourjavadi A , et al . Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions [J]. J. Mater. Chem., 2017, 5A: 23406
|
11 |
Zhu J J , Xiao P , Li H L , et al . Graphitic carbon nitride: synthesis, properties, and applications in catalysis [J]. ACS Appl. Mater. Interfaces, 2014, 6: 16449
|
12 |
Lei J Y , Wang L Z , Zhang J L . Superbright multifluorescent core-shell mesoporous nanospheres as trackable transport carrier for drug [J]. ACS Nano, 2011, 5: 3447
|
13 |
Lei J Y , Wang L Z , Zhang J L . Ratiometric pH sensor based on mesoporous silicananoparticles and förster resonance energy transfer [J]. Chem. Commun., 2010, 46: 8445
|
14 |
Xiao S Y , Xu G , Chen G , et al . Intramolecular cyclization of N-phenylanthranilic acid catalyzed by MCM-41 with different pore diameters [J]. Res. Chem. Intermed., 2015, 41: 10125
|
15 |
Fellinger T P , Hasché F , Strasser P , et al . Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide [J]. J. Am. Chem. Soc., 2012, 134: 4072
|
16 |
Wang H W , Hu Z A . Chang Y Q,et al. Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors [J]. J. Mater. Chem., 2011, 21: 10504
|
17 |
Thomas A , Fischer A , Goettmann F , et al . Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts [J]. J. Mater. Chem., 2008, 18: 4893
|
18 |
Luo L , Zhang A F , Janik M J , et al . Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation [J]. Appl. Surf. Sci., 2017, 396: 78
|
19 |
Zhang L S , Ding N , Wu J H , et al . New two-dimensional porous graphitic carbon nitride nanosheets for highly efficient photocatalytic hydrogen evolution under visible-light irradiation [J]. Catal. Sci. Technol., 2018, 8: 3846
|
20 |
Xia Y , Mokaya R . Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method [J]. Adv. Mater., 2004, 16: 1553
|
21 |
Zheng D D , Pang C Y , Liu Y X , et al . Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution [J]. Chem. Commun., 2015, 51: 9706
|
22 |
Yu H J , Shi R , Zhao, Y X, et al . Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution [J]. Adv. Mater., 2017, 29: 1605148
|
23 |
Bai B C , Cho S , Yu H R , et al . Effects of aminated carbon molecular sieves on breakthrough curve behavior in CO2/CH4 separation [J]. J. Ind. Eng. Chem., 2013, 19: 776
|
24 |
Liang Q H , Li Z , Yu X L , et al . Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution [J]. Adv. Mater., 2015, 27: 4634
|
25 |
Ovcharov M , Shcherban N , Filonenko S , et al . Hard template synthesis of porous carbon nitride materials with improved efficiency for photocatalytic CO2 utilization [J]. Mater. Sci. Eng., 2015, 202B: 1
|
26 |
Li X H , Zhang J S , Chen X F , et al . Condensed graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion [J]. Chem. Mater., 2011, 23: 4344
|
27 |
Wang J H , Zhang C , Shen Y F , et al . Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity[J]. J. Mater. Chem., 2015, 3A: 5126
|
28 |
Lu S , Chen Z W , Li C , et al . Adjustable electronic performances and redox ability of a g-C3N4 monolayer by adsorbing nonmetal solute ions: a first principles study [J]. J. Mater. Chem., 2016, 4A: 14827
|
29 |
Ma H Z , Feng J , Jin F , et al . Where do photogenerated holes at the g-C3N4/water interface go for water splitting: H2O or OH-? [J]. Nanoscale, 2018, 10: 15624
|
30 |
Yang C W , Qin J Q , Rajendran S , et al . WS2 and C-TiO2 nanorods acting as effective charge separators on g-C3N4 to boost visible-light activated hydrogen production from seawater [J]. ChemSusChem, 2018, 11: 4077
|
31 |
Makita M , Harata A . Photocatalytic decolorization of rhodamine B dye as a model of dissolved organic compounds: Influence of dissolved inorganic chloride salts in seawater of the Sea of Japan [J]. Chem. Eng. Process., 2008, 47: 859
|
32 |
Chen W , Chang L , Ren S B , et al . Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal [J]. J. Hazard. Mater., 2020, 384: 121308
|
33 |
Zhu Y X , Cui Y J , Xiao B B , et al . Z-scheme 2D/2D g-C3N4/Sn3O4 heterojunction for enhanced visible-light photocatalytic H2 evolution and gradation of ciprofloxacin [J]. Mat. Sci. Semicon. Proc., 2021, 129: 105767
|
34 |
Wu D Y , Li J Z , Guan J R , et al . Improved photoelectric performance via fabricated heterojunction g-C3N4/TiO2/HNTs loaded photocatalysts for photodegradation of ciprofloxacin [J]. J. Ind. Eng. Chem., 2018, 64: 206
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|