Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (2): 152-160    DOI: 10.11901/1005.3093.2020.495
  研究论文 本期目录 | 过刊浏览 |
开放式氮缺陷氮化碳中空微球用于增强光解水制氢和CO2 还原
欧阳杰, 李雪, 祝玉鑫, 曹福, 崔言娟()
江苏科技大学环境化学工程学院 镇江 212100
Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction
OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan()
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
引用本文:

欧阳杰, 李雪, 祝玉鑫, 曹福, 崔言娟. 开放式氮缺陷氮化碳中空微球用于增强光解水制氢和CO2 还原[J]. 材料研究学报, 2022, 36(2): 152-160.
Jie OUYANG, Xue LI, Yuxin ZHU, Fu CAO, Yanjuan CUI. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. Chinese Journal of Materials Research, 2022, 36(2): 152-160.

全文: PDF(7757 KB)   HTML
摘要: 

使用介孔SiO2球为模板、二氰二氨为原料,用直接热聚合-刻蚀法制备开放式氮缺陷氮化碳中空微球OHCNs产物。这种OHCNS产物具有开放式半球结构、较大的比表面积和孔隙率,尺寸大小复制SiO2模板。局部“热刻蚀”生成开放式中空微球,并使产物产生大量氮缺陷和丰富的表面氨基。测试结果表明,适量的合成原料有利于优化产物的物理化学性能,表现出增强的瞬时光电响应和加速的光生载流子传输性能。同时,N缺陷拓宽了产物的可见光吸收范围。二氰二胺与SO2模板质量比为1∶1的产物OHCNS-1,具有显著增强的光催化活性。在可见光下照射下OHCNS-1的光解水制氢和光催化还原CO2生产的CO分别达到了45.9和47.3 μmol·h-1,分别是非SO2模板法合成产物的4.4倍和4.0倍。同时,在模拟废水环境OHCNs-1能保持稳定的光解水制氢活性,且能降解部分环境污染物。

关键词 无机非金属材料氮化碳硬模板法光解水开放式中空微球    
Abstract

Open hollow microsphere carbon nitride with nitrogen defects (OHCNs) were synthesized by means of direct thermal polymerization-etching method with mesoporous SiO2 spheres as templates and dicyandiamide as raw materials. The resulted OHCNs present a hemispherical structure with large specific surface area and open porosity. The size of OHCNs can be replicated from the SiO2 templates. The presence of the local 'thermal etching' during the process favors the formation of open hollow microspheres, at the same time, makes the generation of lots of nitrogen defects and abundant surface amino groups. The appropriate proportion of raw materials is beneficial to optimizing the physical-chemical properties of the products, such as the enhanced transient photoelectric response and accelerated photo-generated carrier transport. Furthermore, the existence of nitrogen defects broadens the visible light absorption range of the products. OHCNs-1 (the mass ratio of dicyandiamide to SiO2 template is 1∶1) demonstrates significantly enhanced photocatalytic activity. Under visible light irradiation the photocatalytic water splitting for hydrogen production and photocatalytic reduction of CO2 to produce CO on OHCNs-1 reach 45.9 and 47.3 μmol·h-1, which is 4.4 times and 4.0 times of the products prepared without SiO2 template, respectively. Furthermore, OHCNs-1 can maintain stable hydrogen production activity in simulated sewage environment, whilst degrade part of the environmental pollutants simultaneously.

Key wordsinorganic nonmetallic materials    carbon nitride    hard template method    photolysis water    open hollow microsphere
收稿日期: 2020-11-20     
ZTFLH:  O649  
基金资助:江苏省研究生科研与实践创新计划(KYCX20-3152)
作者简介: 欧阳杰,男,1996年生,硕士生
图1  合成催化剂OHCNS的示意图
图2  催化剂的XRD谱
图3  CN和OHCNs-1的SEM照片、mSiO2模板以及OHCNs-1和OHCNs-3的TEM照片
图4  催化剂的N2吸附-脱附等温线和孔径分布
图5  CN和PFCN-1的XPS谱
SpeciesCNOHCNs-1
CC-C/C=C9.0423.1
C-O1.983.4
C-N-H88.9873.5
NC-N=C73.066.7
N-(C)322.98.6
C-N-H4.124.7
表1  CN和OHCNs-1中C和N元素的含量
图6  催化剂的紫外-可见吸收光谱和禁带宽度值
图7  催化剂的稳态PL图谱、电化学阻抗图谱和光电流图谱
图8  催化剂的光解水制氢性能、循环制氢稳定性以及光催化还原CO2性能
SamplesTemplate

BET

/m2·g-1

ProductYieldIncreased activity timesRef.
PCNMMelamine sponge78H229.0 (μmol/h)2.8[24]
C3N4-MCFMCF70CH40.05 (μmol/g)2.5[25]
CNRsAAO25O27 (μmol/h)2[26]
GPPCNCaCO336.1Photocurrent42.9 (μA/cm2)4.2[27]
OHCNs-1Silicon oxide61H245.9 (μmol/h)4.5This paper
表2  用硬模板法合成的多孔氮化碳及其光解水制氢性能
图9  催化剂在模拟海水、抗生素溶液和染料溶液中的光催化产氢率
SolutionUp-waterMBMGRBTHCHCH
H2 evolution/μmol45.923.043.6123.645.345.247.2
Degradation rate/%-95.185.6034.528.40
表3  OHCNs-1在模拟废水环境下的产氢量及对污染物的降解率
1 Chen X B , Shen S H , Guo L J , et al . Semiconductor-based photocatalytic hydrogen generation [J]. Chem. Rev., 2010, 110: 6503
2 Liu X , Inagaki S , Gong J L . Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation [J]. Angew. Chem. Int. Ed., 2016, 55: 14924
3 Wang C L , Sun Z X , Zheng Y , et al . Recent progress in visible light photocatalytic conversion of carbon dioxide [J]. J. Mater. Chem., 2019, 7A: 865
4 Zheng Y , Lin L H , Wang B , et al . Graphitic carbon nitride polymers toward sustainable photoredox catalysis [J]. Angew. Chem. Int. Ed., 2015, 54: 12868
5 Wang X C , Blechert S , Antonietti M . Polymeric graphitic carbon nitride for heterogeneous photocatalysis [J]. ACS Catal., 2012, 2: 1596
6 Tong Z W , Yang D , Sun Y Y , et al . Tubular G-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer [J]. Small, 2016, 12: 4093
7 Ye S , Wang R , Wu M Z , et al . A review on g-C3N4 for photocatalytic water splitting and CO2 reduction [J]. Appl. Surf. Sci., 2015, 358: 15
8 Dong G H , Yang L P , Wang F , et al . Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides [J]. ACS Catal., 2016, 6: 6511
9 Ling F L , Li W J , Ye L J . The synergistic effect of non-metal doping or defect engineering and interface coupling on the photocatalytic property of g-C3N4: first-principle investigations [J]. Appl. Surf. Sci., 2019, 473: 386
10 Naseri A , Samadi M , Pourjavadi A , et al . Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions [J]. J. Mater. Chem., 2017, 5A: 23406
11 Zhu J J , Xiao P , Li H L , et al . Graphitic carbon nitride: synthesis, properties, and applications in catalysis [J]. ACS Appl. Mater. Interfaces, 2014, 6: 16449
12 Lei J Y , Wang L Z , Zhang J L . Superbright multifluorescent core-shell mesoporous nanospheres as trackable transport carrier for drug [J]. ACS Nano, 2011, 5: 3447
13 Lei J Y , Wang L Z , Zhang J L . Ratiometric pH sensor based on mesoporous silicananoparticles and förster resonance energy transfer [J]. Chem. Commun., 2010, 46: 8445
14 Xiao S Y , Xu G , Chen G , et al . Intramolecular cyclization of N-phenylanthranilic acid catalyzed by MCM-41 with different pore diameters [J]. Res. Chem. Intermed., 2015, 41: 10125
15 Fellinger T P , Hasché F , Strasser P , et al . Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide [J]. J. Am. Chem. Soc., 2012, 134: 4072
16 Wang H W , Hu Z A . Chang Y Q,et al. Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors [J]. J. Mater. Chem., 2011, 21: 10504
17 Thomas A , Fischer A , Goettmann F , et al . Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts [J]. J. Mater. Chem., 2008, 18: 4893
18 Luo L , Zhang A F , Janik M J , et al . Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation [J]. Appl. Surf. Sci., 2017, 396: 78
19 Zhang L S , Ding N , Wu J H , et al . New two-dimensional porous graphitic carbon nitride nanosheets for highly efficient photocatalytic hydrogen evolution under visible-light irradiation [J]. Catal. Sci. Technol., 2018, 8: 3846
20 Xia Y , Mokaya R . Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method [J]. Adv. Mater., 2004, 16: 1553
21 Zheng D D , Pang C Y , Liu Y X , et al . Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution [J]. Chem. Commun., 2015, 51: 9706
22 Yu H J , Shi R , Zhao, Y X, et al . Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution [J]. Adv. Mater., 2017, 29: 1605148
23 Bai B C , Cho S , Yu H R , et al . Effects of aminated carbon molecular sieves on breakthrough curve behavior in CO2/CH4 separation [J]. J. Ind. Eng. Chem., 2013, 19: 776
24 Liang Q H , Li Z , Yu X L , et al . Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution [J]. Adv. Mater., 2015, 27: 4634
25 Ovcharov M , Shcherban N , Filonenko S , et al . Hard template synthesis of porous carbon nitride materials with improved efficiency for photocatalytic CO2 utilization [J]. Mater. Sci. Eng., 2015, 202B: 1
26 Li X H , Zhang J S , Chen X F , et al . Condensed graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion [J]. Chem. Mater., 2011, 23: 4344
27 Wang J H , Zhang C , Shen Y F , et al . Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity[J]. J. Mater. Chem., 2015, 3A: 5126
28 Lu S , Chen Z W , Li C , et al . Adjustable electronic performances and redox ability of a g-C3N4 monolayer by adsorbing nonmetal solute ions: a first principles study [J]. J. Mater. Chem., 2016, 4A: 14827
29 Ma H Z , Feng J , Jin F , et al . Where do photogenerated holes at the g-C3N4/water interface go for water splitting: H2O or OH-? [J]. Nanoscale, 2018, 10: 15624
30 Yang C W , Qin J Q , Rajendran S , et al . WS2 and C-TiO2 nanorods acting as effective charge separators on g-C3N4 to boost visible-light activated hydrogen production from seawater [J]. ChemSusChem, 2018, 11: 4077
31 Makita M , Harata A . Photocatalytic decolorization of rhodamine B dye as a model of dissolved organic compounds: Influence of dissolved inorganic chloride salts in seawater of the Sea of Japan [J]. Chem. Eng. Process., 2008, 47: 859
32 Chen W , Chang L , Ren S B , et al . Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal [J]. J. Hazard. Mater., 2020, 384: 121308
33 Zhu Y X , Cui Y J , Xiao B B , et al . Z-scheme 2D/2D g-C3N4/Sn3O4 heterojunction for enhanced visible-light photocatalytic H2 evolution and gradation of ciprofloxacin [J]. Mat. Sci. Semicon. Proc., 2021, 129: 105767
34 Wu D Y , Li J Z , Guan J R , et al . Improved photoelectric performance via fabricated heterojunction g-C3N4/TiO2/HNTs loaded photocatalysts for photodegradation of ciprofloxacin [J]. J. Ind. Eng. Chem., 2018, 64: 206
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.