材料研究学报, 2021, 35(9): 667-674 DOI: 10.11901/1005.3093.2020.427

研究论文

吲哚基掺氮分级多孔炭的制备及其对酸性橙74的吸附性能

余谟鑫,1,2, 蒯乐1, 王亮1, 张晨1, 王晓婷1,3, 陈启厚1

1.安徽工业大学化学与化工学院 马鞍山 243000

2.中钢天源有限公司 马鞍山 243000

3.马钢集团股份有限公司 马鞍山 243000

Synthesis of N-Doped Hierarchical Porous Carbon and its Adsorption Capacity for Acid Orange 74

YU Moxin,1,2, KUAI Le1, WANG Liang1, ZHANG Chen1, WANG Xiaoting1,3, CHEN Qihou1

1.School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 234000, China

2.Sinosteel New Materials Co. Ltd. , Ma'anshan 234000, China

3.Magang (Group) Holding Co. Ltd. , Ma'anshan 234000, China

通讯作者: 余谟鑫,副教授,yumoxin2005@aliyun.com,研究方向为纳米多孔材料;新型炭材料的制备及其在能源、环保方面的应用

收稿日期: 2020-10-15   修回日期: 2020-11-26   网络出版日期: 2021-10-12

基金资助: 国家自然科学基金.  51602004
中国博士后基金.  2019M652173

Corresponding authors: YU Moxin, Tel: 13865557930, E-mail:yumoxin2005@aliyun.com

Received: 2020-10-15   Revised: 2020-11-26   Online: 2021-10-12

作者简介 About authors

余谟鑫,男,1978年生,博士

摘要

以吲哚为碳源、氧化钙为模板耦合KOH活化并调节活化终温,制备出表面掺氮的层状分级多孔炭(HPCT),研究了其对酸性橙74的吸附性能。结果表明:随着活化温度的提高这种多孔炭的比表面积增大,活化终温为900℃时制得的HPC900比表面积高达1629 m2/g。这种炭材料具有相互连接的层状结构,且随着活化温度的提高炭壁层变薄。这种炭材料的表面有丰富的含氮官能团C-NH2,随着活化温度的提高C-NH2的含量随之提高。C-NH2官能团与酸性橙74发生π-π堆积效应或静电相互作用,有利于提高其吸附性能。Freundlich模型能很好地描述HPCT对染料的吸附过程,在50 mg/L的平衡浓度下HPC900对废水中酸性橙74的吸附量超过270 mg/g;拟一级动力学方程能更好的描述HPCT对酸性橙74的吸附过程,物理吸附为控速步骤。

关键词: 无机非金属材料 ; 吲哚 ; 掺氮多孔炭 ; 酸性橙74 ; 吸附

Abstract

N-doped hierarchical porous carbon (HPCT) was synthesized by adjusting the final activation temperature, with indole as carbon and nitrogen source, CaO as template coupled with KOH activation, and then the adsorption performance of acid orange 74 on HPCT was investigated. BET results show that the surface area of HPCT increases with the increase of activation temperature. The specific surface area of the as-made HPC900 is up to 1629 m2/g when the final activation temperature was 900℃. The FESEM and TEM results demonstrate that the HPCT has the interconnected layer structure. With the rising activation temperature the wall width of HPCT becomes thinner. XPS results show that nitrogen functional groups existed on the HPCT surface, the content of C-NH2 increases gradually as temperature rose. The above functional group is conducive to the π-π stacking effect and electrostatic interaction with absorbate acid orange 74, which is beneficial to the adsorption process. The adsorption isotherm results indicate that the adsorption process could be described by Freundlich model, the equilibrium adsorption capacity of which was more than 270 mg/g by the equilibrium concentration of 50 mg/L. The kinetic results show that the pseudo first-order kinetic equation can better describe the adsorption process, while the physical adsorption is the rate-control step.

Keywords: inorganic non-metallic materials ; indole ; N-doped porous carbon ; acid orange 74 ; adsorption

PDF (2868KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

余谟鑫, 蒯乐, 王亮, 张晨, 王晓婷, 陈启厚. 吲哚基掺氮分级多孔炭的制备及其对酸性橙74的吸附性能. 材料研究学报[J], 2021, 35(9): 667-674 DOI:10.11901/1005.3093.2020.427

YU Moxin, KUAI Le, WANG Liang, ZHANG Chen, WANG Xiaoting, CHEN Qihou. Synthesis of N-Doped Hierarchical Porous Carbon and its Adsorption Capacity for Acid Orange 74. Chinese Journal of Materials Research[J], 2021, 35(9): 667-674 DOI:10.11901/1005.3093.2020.427

染料废水严重污染生态环境,对其处理是一个难题[1]。染料着色性较强,少量的废水便能使水体变色。染料的着色性影响水体的透光性从而影响水生植物的光合作用,破坏水体生态系统的平衡[2]。更为严重的是,部分染料还具有毒性,长期接触能改变人体的DNA结构而诱发癌症[3]。采用有效、绿色且经济的工艺处理含染料废弃物,是环境保护领域的一个重要研究课题。

目前处理染料废水常用的方法有物理处理法、化学处理法和微生物处理法。物理处理法包括吸附法[4~7]、膜分离法[8,9]和磁分离法[10];化学处理法包括混凝沉淀法[11]、氧化法[12]、还原法、电化学法和焚烧法。吸附法操作方便且分离效果好,其本质是一种界面现象。常用的吸附剂有活性炭[13]、石墨烯[14]、碳纳米管[15,16]、活性碳纤维[17]、沸石[18]、分子筛[19]和活性氧化铝等[20,21]。Cai等[22]制备的核-壳结构碳材料,对锥虫蓝染料的吸附容量达到115.6 mg/g,优于粒状碳。Veerakumar等[23]合成的含酸性官能团的介孔碳,对铬黑T的最大吸附容量为117.0 mg/g,远高于其他吸附剂。Kong等[24]将带正电荷的CTS和带负电荷的CMC溶液在静电相互作用下混合搅拌,制备的中空胶囊对亚甲基蓝、甲基橙和酸性蓝有良好的去除性能。

吲哚又称苯并吡咯,存在于茉莉、水仙和苦橙等植物的花油中,是一种资源丰富且易得的含氮杂化化合物。酸性橙74是含多个芳环的直链结构染料,随印染工业排放至水体中,威胁水生动植物和人类的健康。用传统的水处理方法难以处理这种抗光、抗化学氧化的污染物。用吲哚制备的炭材料吸附酸性离子,有较好的应用前景。本文使用吲哚为碳源和氮源、以CaO为模板、以KOH为扩孔剂制备掺氮多孔炭,研究其对酸性橙74的吸附性能并阐明其吸附机理。

1 实验方法

1.1 实验用试剂和仪器

吲哚、氧化钙、氢氧化钾和酸性橙74,均为分析纯;去离子水。

250型X射线光电子能谱(XPS),扫描范围为0~1350 eV;Nanosem430型扫描电子显微镜(SEM);3H-2000PS1型自动氮吸附仪(BET);JEM-2100型透射电镜(TEM);JH752型紫外分光光度计;GSL-1600X型高温真空管式炉。

1.2 HPCs的制备

将质量比为2∶3∶5的吲哚、纳米氧化钙和氢氧化钾放入在乳钵中研磨,混合均匀后置于刚玉舟并装入管式炉中。通入流速为40 mL/min的氩气,气体后加热。以5℃/min的速率将管式炉加热至150℃,恒温30 min后以相同的升温速率加热至终温(800~900℃),恒温60 min后在保持气流畅通的情况下自然降温至室温。将得到的样品研磨成粉末后加入2 mol/L盐酸酸洗,搅拌10 min后超声30 min,重复多次以确保完全洗去氧化钙模板。再加入热蒸馏水洗涤至滤液成中性,然后置于温度为110℃的鼓风干燥箱干燥24 h。将干燥好的样品研磨成细粉后过325目筛,得到产物HPCT。其中T代表活化终温。

1.3 吸附剂性能的测定

阴离子染料酸性橙74溶于水后显橙色,还溶于乙醇,微溶于溶纤素。其球棍模型结构如图1所示。

图1

图1   吸附剂酸性橙74的化学结构式

Fig.1   Chemical structures of adsorbates: acid orange 74


使用紫外分光光度计在476 nm波长下测定酸性橙74的标准曲线,由拟合结果得到染料的标准曲线方程为y=-0.83+110.08x,相关性系数R2为0.998,说明相关性非常好。

吸附等温线:在室温条件下,在不同浓度等量酸性橙74溶液中添加10 mg HPCT,震荡搅拌6 h后测量吸附后上清液的浓度,探究炭材料吸附等温线。HPCT对酸性染料的吸附量qt(mg·g-1)为

qt=(Co-Ct)VW

式中qt为吸附时间t时单位质量吸附剂的吸附量(mg·g-1);C0为初始状态下吸附质的浓度(mg·L-1);Ct为吸附时间t时吸附质的浓度(mg·L-1);V为吸附质的体积(mL);W为吸附质的质量(mg)。

为了更好的了解酸性染料在HPCT上的吸附过程达到平衡与两相浓度间的关系,用Langmuir吸附等温方程

Ceqe=1QKL+CeQ

和Freundlich吸附等温方程

ln qe=ln KF+1nln Ce

进行拟合。式中Ce为吸附质在溶液中的浓度(mg·L-1);qe为单位质量吸附剂的吸附量(mg·g-1);Q为吸附达到平衡时,单层的最大吸附量(mg·g-1);KL为表面吸附亲和性常数(L·mg-1);KF为表面吸附亲和。

吸附动力学:在室温条件下将10 mg的HPCT装入盛有200 mg/L的酸性橙74溶液中,每隔一定的时间测定酸性橙74的即时浓度。为了研究吸附、脱附速度及各种影响因素,使用准一级动力学

ln(qe-qt)=lnqe-K1t

和准二级动力学模型

tqt=1K2qe2+tqe

拟合吸附数据。式中qe为平衡时吸附量(mg·g-1);qtt时刻的吸附量(mg·g-1);K1为拟一级吸附速率常数(min-1);K2为拟二级吸附速率常数(g·mg-1·min-1);t为吸附时间(min)。

2 结果和讨论

2.1 FESEMTEM分析

图2给出了以吲哚为碳源制备的不同温度的多孔炭的FESEM图片和TEM照片。图2a给出了终温为900℃的多孔炭HPC900的FESEM图片。可以看出,多孔炭含有大量的炭层结构,炭层之间相互连接构成了发达的孔隙结构。图2b~d分别给出了HPC800、HPC850和HPC900的TEM照片。可以看出,这三种不同温度的多孔炭其形貌皆为褶皱的片层状,较为粗糙褶皱的表面提高了活性位点的利用率[25]

图2

图2   HPC900的扫描电镜照片、HPC800、HPC850和HPC900的透射电镜照片

Fig.2   FESEM images of HPC900 (a) and TEM images of HPC800 (b), HPC850 (c) and HPC900 (d)


2.2 孔结构

图3给出了HPCT的吸脱附等温线和孔径分布。从氮气吸脱附曲线可以看出,在不同温度下制备的多孔炭其氮吸脱附曲线有明显的滞后环,属于典型的Ⅳ型等温线。这表明,本文制备的多孔炭中有微孔和中孔,是明显的分级结构[26]。相对压力达到0.8后,HPC900对氮的吸附量比HPC850和HPC800的吸附量大。

图3

图3   HPCT的氮气吸脱附曲线和孔径分布图

Fig.3   Nitrogen adsorption-desorption isotherms (a) and pore size distribution (b) of HPC T


表1给出了HPCT的孔结构参数,可见,HPCT的比表面积很大,平均孔径也较高,为2.60~3.12 nm。随着温度的提高比表面积和平均孔径都随之增大,HPC900的比表面积高达1629 m2·g-1。根据BJH计算出的孔径分布表明,孔径主要分布在1~2 nm的微孔,能容纳染料分子尺寸为(1.92×1.28×0.96 nm)的酸性橙74。HPC900中尺寸为2~3 nm的小介孔是传输吸附质的通道,使酸性染料填充入HPCT孔道内,完成物理吸附[27]

表1   HPCT样品的比表面积及孔结构参数

Table 1  Specific surface area and pore structure parameters of HPCT

SampleDap/nmSBET/m2·g-1Smic/m2·g-1Vt/cm3·g-1Vmic/cm3·g-1Non-Vmic/Vt
HPC8002.6014589140.950.470.51
HPC8502.7015207731.020.400.61
HPC9003.1216294951.270.260.79

Note:Dap is the average pore size; SBET is the specific surface area; Smic is the specific surface area of the micropores, calculated by the t-plot method; Vt is the total pore volume, calculated under the relative pressure of 0.998; Vmic is the micro pore volume of the BJH method; Non-Vmic/Vt is the ratio of the non-micro pore volume of the BJH method to the total pore volume of the BJH method

新窗口打开| 下载CSV


2.3 XPS分析

图4a给出了以吲哚为碳源和氮源制备的多孔炭材料的XPS全谱。可以看出,终温不同的三种多孔炭都含有碳元素、氧元素和氮元素,吲哚作为一种含氮元素的碳源将氮元素掺杂进了HPCT中。图4b给出了HPC900的O 1s轨道分析和N 1s轨道分析光谱。可以看出,HPC900表面的含氧官能团主要是C-O和C=O,含氮官能团主要是C-N=C、N-(C)3和C-N-H这三种,其结合能分别为398.3、400.5和401.8 eV。

图4

图4   HPCT的XPS全谱图、HPC900的O 1s图和HPC900的N 1s图

Fig.4   XPS spectra of HPCT (a), O 1s spectra of HPC900 (b) and N 1s spectra of HPC900 (c)


表2列出了不同终温的多孔炭所含官能团的含量。从表2可见,随着活化终温的提高多孔炭的含碳量有所提高,含氮量和含氧量却有所降低。碱性和弱酸性含氧官能团C=O和C-O,有助于提高材料的亲水性。随着温度的提高C-N-H的含量提高,这种官能团在本文的pH值条件下呈Lewis碱性,能与酸性橙74上的酸性基团产生π-π堆积效应和静电吸引,进一步提高HPCT对酸性橙74的吸附[28]

表2   制备分级多孔炭中元素及官能团含量

Table 2  Nitrogen functional groups in graded porous carbon (atomic fraction, %)

SamplesC 1sN1sC-N=CN-(C)3C-NH2O 1sC=OC-OH
HPC80082.595.892.392.820.6811.522.392.82
HPC85085.435.062.272.050.749.512.272.05
HPC90087.094.661.671.711.288.251.671.71

新窗口打开| 下载CSV


2.4 吸附性能

2.4.1 吸附等温线

图5a给出了HPCT对酸性橙74的吸附等温线。图5表明,HPCT对酸性橙74表现出极好的吸附性能,平衡浓度为50 mg/L时对酸性橙74的吸附量达到278 mg/g。吸附量随着平衡浓度的增高持续提高,在400 mg/L的高浓度区吸附仍然没有达到饱和。其原因是,HPCT中的官能团和孔隙等吸附位点没有被完全占据,使酸性橙74仍能聚集在HPCT上。

图5

图5   HPCT吸附酸性橙74的吸附等温线、Langmuir拟合和Freundich拟合

Fig.5   Adsorption isotherms of acid orange 74 onto HPCT (a), Langmuir model fitting (b) and Freundich model fitting (c)


图5b、c给出了HPCT对酸性橙74的吸附等温线模型拟合,表3列出了HPCT对酸性橙74吸附等温线模型拟合的参数。从表中各项系数的对比分析,尤其是从各自的相关性拟合参数R2值可见,两种拟合模型的R2值相差不大,但Freundich模型的R2值略高。这表明,该模型对吸附过程的描述更为可靠,且Freundich模型的参数n/1<1表明吸附比较容易进行。

表3   HPCT的等温线拟合参数

Table 3  Parameters of adsorption isotherm model fitting for acid orange 74 onto HPCT

SamplesLangmuirFreundich
qmax/mg·g-1KLR2nKFR2
HPC80011360.0070.991.8535.490.99
HPC85014850.0050.991.5121.190.99
HPC90019660.0030.981.3615.840.99

新窗口打开| 下载CSV


2.4.2 吸附动力学

图6a给出了在室温下酸性橙74吸附量随时间的变化。可以看出,HPCT加入染料溶液中立即表现出良好的吸附性能。其中HPC900的吸附量增加的最快,因为HPC900中的非微孔数量最多,酸性橙74通过2~3 nm的中孔通道快速扩散,到达微孔吸附位点。HPC900表面含氮官能团C-NH2的含量最高,这也是吸附更快、吸附能力更强的重要原因。随着吸附的进行吸附位点被逐渐地占据而使吸附缓慢,吸附24 h后吸附幅度变小,基本上达到平衡状态。图6b、c给出了动力学模型的拟合曲线,表4列出了动力学参数。从表4可见,拟一级动力学模型的qe值和实验值更接近,更加有说服力,表明吸附是化学吸附与物理吸附共同作用,但是以物理吸附作为控速步骤。

图6

图6   HPCT吸附酸性橙74的吸附量随时间变化曲线与吸附动力学拟合曲线

Fig.6   Adsorption capacity of acid orange 74 versus time relationship (a), the fitting curves of pseudo-first-order (b) and pseudo-second-order (c)


表4   HPCT的动力学拟合参数

Table 4  Parameters of kinetic adsorption

SamplesPseudo-first orderPseudo-second order
qe/mg·g-1K1R2qeK2R2
HPC8002310.110.992933.63×10-40.95
HPC8502630.070.993082.62×10-40.92
HPC9003870.130.996998.29×10-50.99

新窗口打开| 下载CSV


2.4.3 与其他吸附剂性能的比较

表5列出了不同吸附剂对酸性橙74的最大吸附量。从表5可以看出,本文制备的HBC900对酸性橙74的最大吸附量约为其它炭基或沸石、氧化物类吸附剂的10倍。经过高温热脱再生循环使用3次后,吸附性能仍达到初始值的75%,表明其循环性能较好。吸附效果表明,本文制备的吸附剂其实用性要远高于其它类吸附剂。同时,本文制备的炭材料不只对酸性橙74有优异的吸附能力,对茜素绿染料的吸附能力也达到336 mg/g。

表5   不同吸附剂对酸性橙74染料的吸附

Table 5  Adsorption capacity of different adsorbent for acid orange 74

Adsorbentqe/mg·g-1Ref.Adsorbentqe/mg·g-1Ref.
Carbon nanotubes43.21[29]Canola stalks25.06[32]
TiO2 nanoparticles37.03[30]PR leaves7.52[33]
Clinoptilolite44.05[31]HPC900387.53This study

新窗口打开| 下载CSV


2.5 吸附机理

图7给出了HPCT对酸性橙74的吸附机理示意图。根据上文的表征分析和吸附实验结果,HPCT极高的比表面积能提供大量对酸性橙74的吸附位点。HPCT内部分布着与酸性橙74尺寸相当的孔径,使染料充分结合吸附位点从而使染料分子进入HPCT的孔隙内完成物理吸附。酸性橙74偶氮结构与磺酸基相连使苯环上的电子云密度升高,整体成为强吸电子结构,染料分子内部的电子共轭和电子云密度的变化使分子呈现吸电子状态。本文制备的HPCT分布着许多-NH2官能团,氮元素上的孤对电子能够与给出电子对,与染料分子形成共价键。于是,经过化学吸附形成的供-受电子体系更加稳定,进一步提高了HPCT对酸性橙74的吸附能力。这表明,吸附过程是比表面积和含氮官能团C-NH2共同作用的结果,与动力学分析结果相符。

图7

图7   HPCT对酸性橙74的吸附机理

Fig.7   Mechanism of the adsorption process of HPCT (a), specific adsorption mode (b)


3 结论

以吲哚为碳源和氮源、氧化钙为模板耦合KOH活化并调节活化终温,可制备表面掺氮的层状分级多孔炭(HPCT)。随着活化温度的提高其比表面积增大,活化终温为900℃制得的HPC900比表面积高达1629 m2/g。这种炭材料具有相互连接的层状结构,且随着活化温度的提高炭壁层变薄。这种炭材料表面含氮官能团C-NH2丰富,随着活化温度的提高C-NH2的含量随之提高。C-NH2官能团与酸性橙74发生π-π堆积效应或静电相互作用,有利于对酸性橙74的吸附。Freundlich模型能很好地描述HPCT对染料的吸附过程,在平衡浓度为50 mg/L条件下HPC900对废水中酸性橙74的吸附量超过270 mg/g;拟一级动力学方程能更好的描述HPCT对酸性橙74的吸附过程,物理吸附为控速步骤。

参考文献

Allman A, Daoutidis D, Arnold W A, et al.

Efficient water pollution abatement

[J]. Ind. Eng. Chem. Res., 2019, 58: 22483

[本文引用: 1]

Samanta P, Desai A V, Let S, et al.

Advanced porous materials for sensing, capture and detoxification of organic pollutants toward water remediation

[J]. ACS Sustainable Chem. Eng., 2019, 7: 7456

[本文引用: 1]

Routoula E, Patwardhan S V.

Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential

[J]. Environ. Sci. Technol., 2020, 54: 647

[本文引用: 1]

Jin L N, Zhao X S, Qian X Y, et al.

Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes

[J]. J. Colloid Interf. Sci., 2018, 509: 2453

[本文引用: 1]

Santoso E, Ediati R, Kusumawati Y, et al.

Review on recent advances of carbon based adsorbent for methylene blue removal from waste water

[J]. Mater. Today Chem., 2020, 16: 100233

Youcef L D, Belaroui L L, López-Galindo A.

Adsorption of a cationic methylene blue dye on an Algerian palygorskite

[J]. Appl. Clay Sci., 2019, 179: 105145

Yang S X, Wang L Y, Zhang X D, et al.

Enhanced adsorption of Congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor

[J]. Chem. Eng. J., 2015, 275: 315

[本文引用: 1]

Savarese M, De Marco E, Falco S, et al.

Biophenol extracts from olive oil mill wastewaters by membrane separation and adsorption resin

[J]. Int. J. Food. Sci. Technol., 2016, 51: 2386

[本文引用: 1]

Do Carmo J, Justino N M, Se Matias M, et al.

Membrane adsorption with polyacrylonitrile prepared with superfine powder-activated carbon, case study: separation process applied in water treatment containing diclofenac

[J]. Environ. Technol., 2020, doi: 10.1080/09593330.2020.1793006

[本文引用: 1]

Lei W J, Ma Y X, La P Q, et al.

Preparation and property of Fe3O4/P(St-co-MMA) micro-nano composites

[J]. Chin. Mater. Res., 2016, 30: 711

[本文引用: 1]

雷文娟, 马应霞, 喇培清.

磁性Fe3O4/P(St-co-MMA)微纳米复合物的制备和性能

[J]. 材料研究学报, 2016, 30: 711

[本文引用: 1]

Zang G, Li J J, Ji X S, et al.

Study on oil separation from oil/water emulsion via coagulation and ultrafiltration

[J]. J. Chem. Eng. Chin. Univ., 2017, 31: 449

[本文引用: 1]

张谨, 李俊俊, 纪晓声.

利用混凝-超滤膜法研究乳化油水的分离过程

[J]. 高校化学工程学报, 2017, 31: 449

[本文引用: 1]

Liu Z, Demeestere K, Van Hulle S.

Enhanced Ozonation of trace organic contaminants in municipal wastewater plant effluent by adding a preceding filtration step: comparison and prediction of removal efficiency

[J]. ACS Sustainable Chem. Eng., 2019, 7: 14661

[本文引用: 1]

Han Z W, Kong S L, Cheng J, et al.

Preparation of efficient carbon-based adsorption material using asphaltenes from asphalt rocks

[J]. Ind. Eng. Chem. Res., 2019, 58: 14785

[本文引用: 1]

Gupta K, Divya G, Khatri O P.

Graphene-like porous carbon nanostructure from Bengal gram bean husk and its application for fast and efficient adsorption of organic dyes

[J]. Appl. Surf. Sci., 2019, 476: 647

[本文引用: 1]

Mashkoor F, Nasar A, Inamuddin J.

Carbon nanotube-based adsorbents for the removal of dyes from waters: A review

[J]. Environ. Chem. Lett., 2020, 18: 605

[本文引用: 1]

Chen W, Nie Y Y, Sun X G, et al.

Performance of lithium-ion capacitors using pre-lithiated multi-walled carbon nanotube composite anode

[J]. Chin. J. Mater. Res., 2019, 33: 371

[本文引用: 1]

陈玮, 聂艳艳, 孙晓刚.

预嵌锂多壁碳纳米管的性能

[J]. 材料研究学报, 2019, 33: 371

[本文引用: 1]

Sun Y, Li D W, Wei Q F.

Adsorption properties of metal-organic framework material MIL-53(Al)-F127 for Bisphenol A

Chin. J. Mater. Res., 2020, 34: 353

[本文引用: 1]

孙玥, 李大伟, 魏取福.

金属有机框架材料MIL-53(Al)-F127对双酚A的吸附性能

[J]. 材料研究学报, 2020, 34: 353

[本文引用: 1]

Oukil S, Bali F, Halliche D.

Adsorption and kinetic studies of methylene blue on modified HUSY zeolite and an amorphous mixture of γ-alumina and silica

[J]. Sep. Sci. Technol,. 2020, 55: 2642

[本文引用: 1]

Duc P T, Kobayashi M, Adachi Y, et al.

Adsorption characteristics of anionic azo dye onto large α-alumina beads

[J]. Colloid Polym. Sci., 2015, 293: 1877

[本文引用: 1]

Herrera-González A M Caldera-Villalobos M, Peláez-Cid A A.

Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite

[J]. J. Environ. Manag., 2019, 234: 237

[本文引用: 1]

Hou S L, Lu H G, Gu Y F, et al.

Conversion of water-insoluble aluminum sources into metal-organic framework MIL-53(Al) and its adsorptive removal of roxarsone

[J]. Chin. J. Mater. Res., 2017, 31: 495

[本文引用: 1]

侯书亮, 卢慧宫, 顾逸凡.

水不溶性铝源合成金属有机骨架MIL-53(AL)及其对洛克沙胂的吸附

[J]. 材料研究学报, 2017, 31: 495

[本文引用: 1]

Cai Z H, Deng X C, Wang Q, et al.

Core-shell granular activated carbon and its adsorption of trypan blue

[J]. J. Clean. Prod., 2020, 242: 118

[本文引用: 1]

Kong Q M, Wang X J, Lou T.

Preparation of millimeter-sized chitosan/carboxymethyl cellulose hollow capsule and its dye adsorption properties

[J]. Carbohydr. Polym., 2020, 244: 116481

[本文引用: 1]

She X J, Wu J J, Zhong J, et al.

Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency

[J]. Nano Energy, 2016, 27: 138

[本文引用: 1]

Zhou N, Qiu P X, Chen H, et al.

KOH etching graphitic carbon nitride for simulated sunlight photocatalytic nitrogen fixation with cyano groups as defects

[J]. J. Taiwan Inst. Chem. Eng., 2018, 83: 99

[本文引用: 1]

Wang H, Liang S, Lv Q Y, et al.

Production of hierarchically porous carbon from natural biomass waste for efficient organic contaminants adsorption

[J]. J. Clean. Prod., 2020, 26: 121352

[本文引用: 1]

Benkhaya S, M'rabet S, Hsissou R, et al.

Synthesis of new low-cost organic ultrafiltration membrane made from Polysulfone/Polyetherimide blends and its application for soluble azoic dyes removal

[J]. J. Mater. Res. Technol., 2020, 9: 4763

[本文引用: 1]

Yu J H, Joo S Y, Sim T Y, et al.

Post-KOH activation of nitrogen-containing porous carbon with ordering mesostructure synthesized through a self-assembly

[J]. Chem. Phys. Lett., 2020, 739: 137028

[本文引用: 1]

Lan R J, Su W B, Zhang J X.

Decolourization of acid orange 74 aqueous solutions in presence of multi-walled carbon nanotubes under ultrasound irradiation

[J]. J. Water. Chem. Technol., 2020, 42: 235

[本文引用: 1]

Topal G, Cakmak N K, Eroğlu A, et al.

Removal of acid orange 74 from wastewater with TiO2 nanoparticle

[J]. Int. J. Res. Ent. J., 2019, 3: 75

[本文引用: 1]

Karadag D.

Modeling the mechanism, equilibrium and kinetics for the adsorption of acid orange 8 onto surfactant-modified clinoptilolite: the application of nonlinear regression analysis

[J]. Dyes Pigm., 2007, 74: 659

[本文引用: 1]

Hamzeh Y, Ashori A, Azadeh E, et al.

Removal of acid orange 7 and remazol black 5 reactive dyes from aqueous solutions using a novel biosorbent

[J]. Mater. Sci. Eng., 2012, 32C: 1394

[本文引用: 1]

Rehman R, Jan Muhammad S, Arshad M.

Brilliant green and acid orange 74 dyes removal from water by Pinus roxburghii leaves in naturally benign way: an application of green chemistry

[J]. J. Chem., 2019, 2019: 3573704

[本文引用: 1]

/