Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (7): 501-509    DOI: 10.11901/1005.3093.2020.275
  研究论文 本期目录 | 过刊浏览 |
K417G合金的环境致脆磨损机理
王振生1(), 谢威1, 彭真1,2, 贺颖茜3, 曾阳根4
1.湖南科技大学机械设备健康维护湖南省重点实验室 湘潭 411201
2.中国航发南方工业有限公司 株洲 412002
3.湖南南方通用航空发动机有限公司 株洲 412002
4.国网湖南省电力有限公司娄底供电分公司 娄底 417000
Environment-induced Brittle Wear Mechanism of K417G Alloy
WANG Zhensheng1(), XIE Wei1, PENG Zhen1,2, HE Yingqian3, ZENG Yanggen4
1.Hunan Provincial Key Laboratory of Mechanical Equipment Health Maintenance, Hunan University of Science and Technology, Xiangtan 411201, China
2.China Aviation Development South Industry Co. Ltd. , Zhuzhou 412002, China
3.Hunan South General Aviation Engine Co. Ltd. , Zhuzhou 412002, China
4.State Grid Hunan Electric Power Co. Ltd. , Loudi Power Supply Branch, Loudi 417000, China
引用本文:

王振生, 谢威, 彭真, 贺颖茜, 曾阳根. K417G合金的环境致脆磨损机理[J]. 材料研究学报, 2021, 35(7): 501-509.
Zhensheng WANG, Wei XIE, Zhen PENG, Yingqian HE, Yanggen ZENG. Environment-induced Brittle Wear Mechanism of K417G Alloy[J]. Chinese Journal of Materials Research, 2021, 35(7): 501-509.

全文: PDF(17769 KB)   HTML
摘要: 

采用可控气氛磨损试验机测试含有Ni3Al相的K417 G合金在不同相对湿度空气、真空、氧气、氮气、二氧化碳、氢气和氩气下的摩擦磨损性能,用SEM观察磨损表面形貌,基于线弹性力学计算表面裂纹应力强度因子KI,依据能量学计算合金元素的环境敏感性,研究合金的环境致脆磨损机理。结果表明:磨损工况下,高相对湿度空气中的水蒸汽是导致K417G合金发生氢致脆性磨损的腐蚀介质,水蒸汽与合金中的γ′-Ni3Al反应生成的原子态H导致环境脆性,环境脆性裂纹源在γ/γ′界面以及碳化物与合金基体界面形核,裂纹既沿着γ/γ′界面以及碳化物与合金基体界面扩展,又进入γ′晶粒;合金表面裂纹的应力强度因子KI小于合金的断裂韧性KIC,接触应力不导致磨损表面裂纹;能量学计算表明,空气下,磨损表面裂纹的产生与Al的含量有关,Al的临界含量为5.53%(原子分数)。

关键词 金属材料K417G合金镍基合金Ni3Al摩擦磨损环境致脆    
Abstract

The friction and wear properties of K417G alloy in air, vacuum, oxygen, nitrogen, carbon dioxide, hydrogen, and argon environments with different relative humidity were assessed by means of a controlled atmosphere wear tester and SEM. Meanwhile, the stress intensity factor KI of the alloy wear surface crack is calculated based on linear elastic mechanics. The environmental sensitivity of alloying elements is also calculated based on energetics. The results show that under wear conditions, water vapor in the air with high relative humidity is the corrosive medium that causes hydrogen-induced brittle wear of K417G alloy. The water vapor reacts with γ′-Ni3Al in the alloy to form atomic H, which causes environmental embrittlement of the alloy. The environmental brittle crack may nucleate at the interfaces of γ/γ′and carbide/alloy matrix. The cracks not only extend along the interfaces of γ/γ′ and carbide/alloy matrix, but also enter the γ′ grains. The stress intensity factor KI of the crack on the alloy surface is smaller than the fracture toughness KIC of the alloy. Therefore, the contact stress on the worn surface of the alloy does not cause cracks wherein. Energetics calculations show that, in air, the occurrence of surface cracks on the wearing alloy is related to the Al content in the alloy, while the critical content of Al is 5.53% (atomic fraction).

Key wordsmetallic materials    K417G alloy    nickel based alloy    Ni3Al    friction and wear    environmental brittleness
收稿日期: 2020-07-06     
ZTFLH:  TH117  
基金资助:湖南省自然科学基金(2020JJ4312)
作者简介: 王振生,男,1978年生,博士
CCrMoAlCoTiVBZrNi
0.189.03.05.310.04.40.750.0180.07Bal.
表1  K417G合金的化学成分
图1  K417G合金腐蚀后的组织形貌SEM图片
图2  K417G合金不同气氛下的摩擦系数和磨损率
图3  不同环境气氛下K417G合金磨损表面的SEM形貌
图4  K417G合金磨损截面SEM形貌
AlTiCrCoNiMo
EDS112.074.9816.515.8359.181.43
EDS212.755.0915.936.0258.821.39
表2  K417G合金裂纹扩展区域的EDS分析结果
图5  K417G合金磨损表面腐蚀后的形貌
AlloysE/GPaa/mmA/×10-3mm2Pm/MPaσp0.2 /MPaσb/MPaKIC/MPa·m1/2
K417G2060.0518.17561223790975[1]116[1]
表3  K417G合金的接触面积、平均应力和力学性能[5]
Chemical equation△G/kJ·mol-1
2/3Al+H2O=1/3Al2O3+H2-290.0
1/2Ti+H2O=1/2TiO2+H2-207.3
2/3Cr+H2O=1/3Cr2O3+H2-115.6
Ni+H2O=NiO+H226
Co+H2O=CoO+H222.9
表4  K417G合金主要组元的代表性氧化物的生成吉布斯自由能
1 Zhang T C, Jiang X X, Li S Z. Behaviour of hydrogen induced corrosion wear of Ti6Al4V alloy [J]. Corros. Sci. Prot. Technol., 1999, 11(3): 142
1 张天成, 姜晓霞, 李诗卓. Ti6Al4V合金氢致脆性磨损机制 [J]. 腐蚀科学与防护技术, 1999, 11(3): 142
2 Niste V B, Tanaka H, Ratoi M, et al. WS2 nanoadditized lubricant for applications affected by hydrogen embrittlement [J]. RSC Adv., 2015, 5: 40678
3 Lunarska E, Stabryla J, Nikiforow K, et al. Boron alloying and laser treatment to improve corrosion and hydrogen resistance of 25G steel [J]. Mater. Sci., 2005, 41: 551
4 Akonko S, Li D Y, Ziomek-Moroz M. Effects of cathodic protection on corrosive wear of 304 stainless steel [J]. Tribol. Lett., 2005, 18: 405
5 Guo J T. Materlals Science and Engineering for Superalloys [M]. Beijing: Science Press, 2010: 108
5 郭建亭. 高温合金材料学 [M]. 北京: 科学出版社, 2010: 108
6 Ao S S, Luo Z, Shan P, et al. Microstructure of inconel 601 nickel-based superalloy laser welded joint [J]. Chin. J. Nonferrous Met., 2015, 25: 2099
6 敖三三, 罗震, 单平等. Inconel 601镍基高温合金激光焊焊缝的显微组织 [J]. 中国有色金属学报, 2015, 25: 2099
7 Shen X M, Liu Y C, Ma G. Tribology for Aero-gas Turbine Engine [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2008: 319
7 沈心敏, 刘雨川, 马纲. 航空燃气轮机摩擦学 [M]. 北京: 北京航空航天大学出版社, 2008: 319
8 Stott F H, Lin D S, Wood G C. The structure and mechanism of formation of the 'glaze' oxide layers produced on nickel-based alloys during wear at high temperatures [J]. Corros. Sci., 1973, 13: 449
9 Hamdy M M, Waterhouse R B. The fretting wear of Ti-6Al-4V and aged inconel 718 at elevated temperature [J]. Wear, 1981, 71: 237
10 Iwabuchi A. Fretting wear of Inconel 625 at high temperature and in high vacuum [J]. Wear, 1985, 106: 163
11 Klaffke D, Carstens T, Banerji A. Influence of grain refinement on the high temperature fretting behaviour of IN 738 LC [J]. Wear, 1993, 160: 361
12 Xu X Y, Xu B S, Liu W J, et al. Study of fretting wear behavior of K417 nickel base superalloy [J]. J. Aeronaut. Mater., 2002, 22(4): 13
12 徐向阳, 徐滨士, 刘文今等. K417镍基高温合金微动磨损行为的研究 [J]. 航空材料学报, 2002, 22(4): 13
13 He Q S, Fu Y C, Chen J J, et al. Study on heat pipe grinding wheels when grinding superalloy GH4169 [J]. Diamond Abras. Eng., 2013, 33(4): 5
13 赫青山, 傅玉灿, 陈佳佳等. 热管砂轮磨削高温合金GH4169实验研究 [J]. 金刚石与磨料磨具工程, 2013, 33(4): 5
14 Qiao Y, Ai X, Liu Z Q, et al. Experimental investigation into milling of Nickel-based powder metallurgy superalloy with coated tools [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2010, 38(8): 83
14 乔阳, 艾兴, 刘战强等. 涂层刀具铣削粉末冶金镍基高温合金试验研究 [J]. 华南理工大学学报(自然科学版), 2010, 38(8): 83
15 Ren J X, Yang M K, Li Y Q, et al. Grinding characteristic of Nickel based superalloy [J]. Acta Aeronaut. Astronaut. Sin., 1997, 18: 755
15 任敬心, 杨茂奎, 李雅卿等. 镍基高温合金的磨削特征 [J]. 航空学报, 1997, 18: 755
16 Su X F. On creeping grinding and crack experiment of superalloys [J]. J. China Univ. Metrol., 2009, 20: 46
16 苏旭峰. 高温合金缓进磨削烧伤机理实验研究 [J]. 中国计量学院学报, 2009, 20: 46
17 Wang Z S, Peng Z, Yang S S, et al. Wear properties of K417G alloy and Ni(Co)CrAlYSi coatings deposited onto K417G under atmospheric environment at room temperature [J]. Chin. J. Nonferrous Met., 2016, 26: 602
17 王振生, 彭真, 杨双双等. 室温大气环境下K417G合金及其表面Ni(Co)CrAlYSi涂层的磨损特性 [J]. 有色金属学报, 2016, 26: 602
18 Peng Z, Wang Z S, Yang S S, et al. Friction and Wear behavior of K417G alloy and NiCrAlYSi coatings from room temperature to 400℃ [J]. Chin. J. Rare Met., 2017, 41: 276
18 彭真, 王振生, 杨双双等. K417G及其表面NiCrAlYSi涂层的摩擦磨损特性 [J]. 稀有金属, 2017, 41: 276
19 Dollar M, Bernstein I M. The effect of hydrogen on deformation substructure, flow and fracture in a nickel-base single crystal superalloy [J]. Acta Metall., 1988, 36: 2369
20 Chen P S, Wilcox R C. Fracture of single crystals of the nickel-base superalloy PWA 1480E in hydrogen at 22℃ [J]. Metall. Trans., 1991, 22A: 2031
21 Liao E B, Guo J T, Wang S H. Research on fatigue crack growth behavior of DZ17G at room temperature [J]. J. Aeronaut. Mater., 1999, 19: 39
21 廖鄂斌, 郭建亭, 王淑荷. 定向凝固合金DZ17G室温疲劳裂纹扩展行为的研究 [J]. 航空材料学报, 1999, 19: 39
22 Wang Z S, Guo J T, Zhou L Z, et al. High temperature wear behavior of NiAl-Cr(Mo)-Ho-Hf eutectic alloy [J]. Acta Metall. Sin., 2009, 45: 297
22 王振生, 郭建亭, 周兰章等. NiAl-Cr(Mo)-Ho-Hf共晶合金的高温磨损特性 [J]. 金属学报, 2009, 45: 297
23 Yuan W Z, Qiu M, Li X J, et al. Study on tribological properties of steel-copper couples in different humidity environments [J]. Lubricat. Eng., 2010, 35(4): 24
23 袁文征, 邱明, 李喜军等. 不同湿度环境中钢/铜配副摩擦磨损性能研究 [J]. 润滑与密封, 2010, 35(4): 24
24 Jiang X X, Li S Z, Li S. Corrosive Wear of Metals [M]. Beijing: Chemical Industry Press, 2003: 342
24 姜晓霞, 李诗卓, 李曙. 金属的腐蚀磨损 [M]. 北京: 化学工业出版社, 2003: 342
25 Bowden F P, Tabor D, translated by Chen S L, Yuan H C, Ding X J. The Friction and Lubrication of Solids [M]. Beijing: China Machine Press, 1982: 91
25 鲍登F P, 泰伯D著, 陈绍澧, 袁汉昌, 丁雪加译. 固体的摩擦与润滑 [M]. 北京: 机械工业出版社, 1982: 91
26 Zhai J W. Rolling wear of rail and the safety assessment of surface crack [D]. Qinhuangdao: Yanshan University, 2018
26 翟建伟. 钢轨的滚动磨损及表面裂纹安全性评定 [D]. 秦皇岛: 燕山大学, 2018
27 Na S J, Li J, Ai L Q. Mechanical Properties of Metallic Materials [M]. Beijing: Metallurgical Industry Press, 2011: 82
27 那顺桑, 李杰, 艾立群. 金属材料力学性能 [M]. 北京: 冶金工业出版社, 2011
28 Zhang Y G, Han Y F, Chen G L. Structural Materials of Intermetallics [M]. Beijing: National Defense Industry Press, 2001: 338
28 张永刚, 韩雅芳, 陈国良. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2001: 338
29 Liu C T. Environmental embrittlement and grain-boundary fracture in Ni3Al [J]. Scripta Metall. Mater., 1992, 27: 25
30 George E P, Liu C T, Pope D P. Environmental embrittlement: the major cause of room-temperature brittleness in polycrystalline Ni3Al [J]. Scr. Metall. Mater., 1992, 27: 365
31 George E P, Liu C T, Pope D P. Intrinsic ductility and environmental embrittlement of binary Ni3Al [J]. Scripta Metall. Mater., 1993, 28: 857
32 He C. Effect of hydrogen on tensile deformation behavior of GH690 alloy [D]. Shenyang: Northeastern University, 2012
32 何成. 氢对GH690合金拉伸变形行为的影响 [D]. 沈阳: 东北大学, 2012
33 Zhang D Z, Hsiao C M, Du G W. Energetical analysis of sensitivity of hydrogen embrittlement of ordered alloy [J]. Scripta Metall. Mater., 1993, 29: 901
34 Zhang D Z, Zou M D, Xiao J M. Energetical analysis of environmental embrittlement of intermetallic compounds [J]. Mater. Sci. Eng., 1997, 15: 17
34 张德志, 邹明达, 肖纪美. 金属间化合物环境敏感脆性的能量学分析 [J]. 材料科学与工程, 1997, 15: 17
35 Fu X C, Shen W X, Yao T Y, et al. Physical Chemistry (5th ed.) [M]. Beijing: People's Education Press, 2005: 483
35 傅献彩, 沈文霞, 姚天扬等. 物理化学(第5版) [M]. 北京: 人民教育出版社, 2005: 483
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.