|
|
镍-不锈钢复合板轧制过程中界面的结合机制 |
范金辉1, 李鹏飞1,2, 梁晓军3, 梁建平2( ), 徐长征3, 蒋力2, 叶祥熙2, 李志军2 |
1.东华大学机械工程学院 上海 201620 2.上海应用物理研究所 洁净能源创新院 上海 201800 3.宝山钢铁股份有限公司 上海 201900 |
|
Interface Evolution During Rolling of Ni-clad Stainless Steel Plate |
FAN Jinhui1, LI Pengfei1,2, LIANG Xiaojun3, LIANG Jiangping2( ), XU Changzheng3, JIANG Li2, YE Xiangxi2, LI Zhijun2 |
1.College of Mechanical Engineering, Donghua University, Shanghai 201620, China 2.Shanghai Institute of Applied Physics, Dalian National Laboratory for Clean Energy Chinese Academy of Sciences (CAS), Shanghai 201800, China 3.Baoshan Iron&Steel Co. , Ltd. , Shanghai 201900, China |
引用本文:
范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
Jinhui FAN,
Pengfei LI,
Xiaojun LIANG,
Jiangping LIANG,
Changzheng XU,
Li JIANG,
Xiangxi YE,
Zhijun LI.
Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. Chinese Journal of Materials Research, 2021, 35(7): 493-500.
1 |
Mccoy Jr H. Status of materials development for molten salt reactors [R]. Oak Ridge National Lab., Tenn. (USA), 1978
|
2 |
Hosnedl, Matal. Development of structural material and equipment for molten salt technology [J]. Pyrochemical separations, 2001: 197
|
3 |
Zhou X T, Li Z J, Lu Y L, et al. The development strategy of thorium-based molten salt reactor materials [J]. Engineering Science in China, 2019, 21(01): 29
|
3 |
周兴泰, 李志军, 陆燕玲, 黄鹤飞, 贺周同, 戴志敏, 徐洪杰. 钍基熔盐堆材料发展战略 [J]. 中国工程科学, 2019, 21(01): 29
|
4 |
American Society of Mechanical Engineers (ASME), American National Standards Institute (ANSI). Boiler and Pressure Vessel Code. [D]. New York, 2013
|
4 |
美国机械工程师协会(ASME), 美国国家标准协会(ANSI). 锅炉及压力容器规范 [D]. New York, 2013
|
5 |
Wang J B, Liu Z L, Zhu H M. Preparation of pulse electroplating nickel coating on hastelloy alloy surface and its corrosion resistance [J]. Journal of Nanhua University, 2018, 32(03): 71
|
5 |
王剑彬, 刘志利, 朱红梅. 哈氏合金表面脉冲电镀镍层的制备及其耐蚀性能 [J]. 南华大学学报, 2018, 32(03): 71
|
6 |
Liu Y H, Yang C, Lu Y L, et al. Study on the performance of nickel-based alloy fluoride salt corrosion protection coating [J]. Rare Metals, 2015, 39(10): 865
|
6 |
刘艳红, 杨超, 陆燕玲, 周兴泰, 李怀林. 镍基合金耐氟盐腐蚀防护涂层的性能研究 [J]. 稀有金属, 2015, 39(10): 865
|
7 |
Chen S H. The influence of rolling process parameters on the bonding strength of the stainless steel/carbon steel composite plate interface [D]. Taiyuan University of Science and Technology, 2014
|
7 |
陈少航. 轧制工艺参数对不锈钢/碳钢复合板界面结合强度的影响 [D]. 太原科技大学, 2014
|
8 |
Jiang J. Research on the microstructure and properties of vacuum hot-rolled composite stainless steel composite plate [D]. Northeastern University, 2014
|
8 |
蒋君. 真空热轧复合不锈钢复合板的组织性能研究 [D]. 东北大学, 2014
|
9 |
Huang Q X, Yang X R, Ma Li-feng, et al. Interface-correlated Characteristics of Stainless Steel/Carbon Steel Plate Fabricated by AAWIV and Hot Rolling [J]. Journal of Iron and Steel Research(International), 2014, 21(10): 931
|
10 |
Jing Y A, Qin Y, Zang X M, et al. The bonding properties and interfacial morphologies of clad plate prepared by multiple passes hot rolling in a protective atmosphere [J]. Elsevier B.V., 2014, 214(8)
|
11 |
Xiao J, Li Z J, Jiang L, et al. Interface microstructure and thermal expansion mismatch in alloy N/316H bimetallic plates [A]. Proceedings of the ASME 2019 Pressure Vessels & Piping Conference [C]. Texas, San Antonio: ASME, 2019
|
12 |
Jing Y A, Qin Y, Zang X M, et al. A novel reduction-bonding process to fabricate stainless steel clad plate [J]. Elsevier B.V., 2014, 617
|
13 |
Hedayati O, Korei N, Adeli M, et al. Microstructural evolution and interfacial diffusion during heat treatment of Hastelloy/stainless steel bimetals [J]. Elsevier B.V., 2017, 712
|
14 |
Xie G G, Luo Z G, Wang G G, et al. Interface Characteristic and Properties of Stainless Steel/HSLA Steel Clad Plate by Vacuum Rolling Cladding [J]. The Japan Institute of Metals and Materials, 2011, 52(8)
|
15 |
Hashimito Y, Kaname H, Shigeru M, et al. Development of a new low carbon low alloy steel suited to be clad with stainless steel [J]. The Iron and Steel Institute of Japan, 1991, 31(7)
|
16 |
Zhu Z C, He Y, Zhang X J, et al. Effect of interface oxides on shear properties of hot-rolled stainless steel clad plate [J]. Elsevier B.V., 2016, 669
|
17 |
Wang G L. Research on the Formation and Evolution Mechanism and Process Control of Inclusions at the Composite Interface of Vacuum Hot Rolling [D]. Northeastern University, 2013
|
17 |
王光磊. 真空热轧复合界面夹杂物的生成演变机理与工艺控制研究 [D]. 东北大学, 2013
|
18 |
Liu B X, Wang S, et al. Interface characteristics and fracture behavior of hot rolled stainless steel clad plates with different vacuum degrees [J]. Elsevier B.V., 2018
|
19 |
Atkins P, Paula J d. Atkins Physical Chemistry [M]. Beijing: Higher Education Press, 2006
|
19 |
Atkins P, Paula J d. Atkins物理化学 [M]. 北京: 高等教育出版社, 2006
|
20 |
Lide D. R. CRC Handbook of Chemistry and Physics. CRC Handbook of Chemistry and Physics [M]. Boca Raton: CRC Press, 2004
|
21 |
Ye D L, Hu J H. Practical Inorganic Thermodynamics Data Manual [M]. Beijing: Metallurgical Industry Press, 2002
|
21 |
叶大伦, 胡建华. 实用无机物热力学数据手册 [M]. 北京: 冶金工业出版社, 2002
|
22 |
Li L, Zhang X J, Liu H Y, et al. The formation mechanism of oxide inclusions in the interface of hot-rolled stainless steel composite plates [J]. Journal of Iron and Steel Research, 2013, 25(01): 43
|
22 |
李龙, 张心金, 刘会云, 殷福星. 热轧不锈钢复合板界面氧化物夹杂的形成机制 [J]. 钢铁研究学报, 2013, 25(01): 43
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|