Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (7): 493-500    DOI: 10.11901/1005.3093.2020.168
  研究论文 本期目录 | 过刊浏览 |
镍-不锈钢复合板轧制过程中界面的结合机制
范金辉1, 李鹏飞1,2, 梁晓军3, 梁建平2(), 徐长征3, 蒋力2, 叶祥熙2, 李志军2
1.东华大学机械工程学院 上海 201620
2.上海应用物理研究所 洁净能源创新院 上海 201800
3.宝山钢铁股份有限公司 上海 201900
Interface Evolution During Rolling of Ni-clad Stainless Steel Plate
FAN Jinhui1, LI Pengfei1,2, LIANG Xiaojun3, LIANG Jiangping2(), XU Changzheng3, JIANG Li2, YE Xiangxi2, LI Zhijun2
1.College of Mechanical Engineering, Donghua University, Shanghai 201620, China
2.Shanghai Institute of Applied Physics, Dalian National Laboratory for Clean Energy Chinese Academy of Sciences (CAS), Shanghai 201800, China
3.Baoshan Iron&Steel Co. , Ltd. , Shanghai 201900, China
引用本文:

范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
Jinhui FAN, Pengfei LI, Xiaojun LIANG, Jiangping LIANG, Changzheng XU, Li JIANG, Xiangxi YE, Zhijun LI. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. Chinese Journal of Materials Research, 2021, 35(7): 493-500.

全文: PDF(13241 KB)   HTML
摘要: 

采用轧制终止取样法对镍-不锈钢热轧复合板轧制过程中的界面成分、界面组织以及界面处的氧化物进行了表征,研究了轧制过程中界面的结合机制并根据热力学原理解释了高温下选择性内氧化的机理。将复合板坯加热至1200℃,保温120 min后进行轧制,分别在轧制3、5、7道次后中断轧制快速水冷,随后进行取样观察。结果表明,轧制3道次时终轧温度为1000℃左右,金属之间有近距离结合,微观组织有轻微的畸变,界面两侧的板材均为等轴晶粒,元素的扩散不甚明显;轧制至5道次时终轧温度为940℃左右,316H的晶粒被拉长而发生晶格畸变,界面附近出现明显的扩散行为;轧制到7道次时终轧温度为880℃,316H层出现大量拉长的畸变晶粒,界面处主要是轧碎的细晶组织,但Ni层的晶粒粗大,界面附近Ni、Fe和Cr元素充分扩散,微弱扩散的Mo元素在316H界面富集。镍-不锈钢复合板在轧制过程中界面的演化遵循三阶段理论和N.Bay理论,3道次到5道次间处于物理接触阶段、物理化学阶段,轧制7道次时物理化学阶段结束并开始扩散,即开始进入“体”相互阶段,主要元素在此阶段完成相互扩散。在高温低氧环境的轧制条件下,界面处生成Mn的氧化物,该氧化物因轧制而破碎并向基材挤压最终在界面附近成链状分布。

关键词 材料表面与界面镍-不锈钢复合板微观结构热轧复合界面    
Abstract

Plate of Ni-clad 316H stainless steel was prepared via hot rolling process after pre-heating at 1200oC for 120 minutes, then concurrently the rolling process was interrupted after rolling for 3, 5, and 7 passes respectively, while the relevant samples are taken and water-quenched for subsequent characterization in terms of the evolution of their interface-composition and -morphology, as well as the formed oxides there. Results show that until the 3rd rolling pass, the rolling plate temperature was about 1000°C, the two metals were closely bounded with equiaxed grains of slightly distorted microstructure on both sides of the interface and the inter-diffusion of elements for the two metals was not obvious; Until the 5th rolling pass, the plate temperature was about 940°C, the grains of 316H were elongated with significant lattice distortion, whereas, obvious inter-diffusion can be found near the interface; Until the 7th rolling pass, the plate temperature was about 880°C, large number of elongated and distorted grains were observed on the 316H steel side and a fine grain structure crushed by hot rolling distributed near the interface. The elements of Ni, Fe and Cr were fully inter-diffused near the interface, but the less motionable Mo enriched at the 316H side. The grains of Ni layer coarsened obviously. The interface evolution of Ni/stainless steel composite plate during the rolling process follows the so called three-stage theory and N. Bay's theory. The physical contact stage and the physical-chemical contact stage happened between the 3rd and 5th pass. Then the rolling from 5th to 7th pass was the final physical-chemical contact phase, whilst the inter-diffusion begins, that is, the "bulk" mutual phase begins. In the high-temperature and low-oxygen environment, the Mn oxides near the interface might form during the rolling process. The oxide was crushed and squeezed toward the substrate by the rolling force, therefore distributed in chains near the interface eventually.

Key wordssurface and interface in the materials    Ni-stainless steel clad plate    microstructure    hot rolling    interface
收稿日期: 2020-05-19     
ZTFLH:  TG166.7  
基金资助:上海市自然科学基金(18ZR1448000);上海扬帆计划(19YF1458300);国家自然科学基金(1671154);国家重点研发计划(2016YFB0700404);中国科学院青年创新促进协会(2019264);中国科学院战略先导专项(XD02004210&XDA21080100)
作者简介: 范金辉,男,1970年生,副教授,博士
ElementCSiMnSCoFeNi
%0.150.350.035<0.0010.250.40Bal.
表1  UNS N02201板材的成分
ElementCSiMnPSNCrMoNiFe
%0.040.0441.040.0280.0020.04016.302.0810.00Bal.
表2  UNS S31609板材的成分
图1  组坯工艺示意图
Passes

Reduction

/mm

Thickness

/mm

Reduction rate/%
15697.72
25647.72
35597.72
495516.73
594619.3
673718.01
783025.73
表3  轧制工艺的压下率
图2  不同轧制道次后界面抛光态的界面形貌
图3  轧制不同道次后界面抛光态的EBSD面扫谱
图4  轧制3道次后的电子探针(EPMA)元素面扫分析
图5  轧制5道次后电子探针(EPMA)元素面扫分析
图6  轧制7道次后电子探针(EPMA)元素面扫分析
Chemical formula

ΔfHmΘ

/kJ·mol-1

ΔfGmΘ

/kJ·mol-1

SmΘ

/J·mol-1·K-1

Cp,mΘ

/J·mol-1·K-1

O200205.129.3
Fe0027.325.1
Fe2O3-824.2-742.287.4103.8
Fe3O4-1118.4-1015.4146.4143.4
FeO-266.5-244.354.051.1
Ni0029.926.1
NiO-244.3-211.738.024. 9
Cr0023.823.4
Cr2O3-1139.7-1058.181.2118.7
Mn0032.026.3
MnO-384.9-362.959.724.9
表4  部分物质在298.15 K时的相应热力学参数[19, 20]
图7  各高温氧化反应的吉布斯自由能
1 Mccoy Jr H. Status of materials development for molten salt reactors [R]. Oak Ridge National Lab., Tenn. (USA), 1978
2 Hosnedl, Matal. Development of structural material and equipment for molten salt technology [J]. Pyrochemical separations, 2001: 197
3 Zhou X T, Li Z J, Lu Y L, et al. The development strategy of thorium-based molten salt reactor materials [J]. Engineering Science in China, 2019, 21(01): 29
3 周兴泰, 李志军, 陆燕玲, 黄鹤飞, 贺周同, 戴志敏, 徐洪杰. 钍基熔盐堆材料发展战略 [J]. 中国工程科学, 2019, 21(01): 29
4 American Society of Mechanical Engineers (ASME), American National Standards Institute (ANSI). Boiler and Pressure Vessel Code. [D]. New York, 2013
4 美国机械工程师协会(ASME), 美国国家标准协会(ANSI). 锅炉及压力容器规范 [D]. New York, 2013
5 Wang J B, Liu Z L, Zhu H M. Preparation of pulse electroplating nickel coating on hastelloy alloy surface and its corrosion resistance [J]. Journal of Nanhua University, 2018, 32(03): 71
5 王剑彬, 刘志利, 朱红梅. 哈氏合金表面脉冲电镀镍层的制备及其耐蚀性能 [J]. 南华大学学报, 2018, 32(03): 71
6 Liu Y H, Yang C, Lu Y L, et al. Study on the performance of nickel-based alloy fluoride salt corrosion protection coating [J]. Rare Metals, 2015, 39(10): 865
6 刘艳红, 杨超, 陆燕玲, 周兴泰, 李怀林. 镍基合金耐氟盐腐蚀防护涂层的性能研究 [J]. 稀有金属, 2015, 39(10): 865
7 Chen S H. The influence of rolling process parameters on the bonding strength of the stainless steel/carbon steel composite plate interface [D]. Taiyuan University of Science and Technology, 2014
7 陈少航. 轧制工艺参数对不锈钢/碳钢复合板界面结合强度的影响 [D]. 太原科技大学, 2014
8 Jiang J. Research on the microstructure and properties of vacuum hot-rolled composite stainless steel composite plate [D]. Northeastern University, 2014
8 蒋君. 真空热轧复合不锈钢复合板的组织性能研究 [D]. 东北大学, 2014
9 Huang Q X, Yang X R, Ma Li-feng, et al. Interface-correlated Characteristics of Stainless Steel/Carbon Steel Plate Fabricated by AAWIV and Hot Rolling [J]. Journal of Iron and Steel Research(International), 2014, 21(10): 931
10 Jing Y A, Qin Y, Zang X M, et al. The bonding properties and interfacial morphologies of clad plate prepared by multiple passes hot rolling in a protective atmosphere [J]. Elsevier B.V., 2014, 214(8)
11 Xiao J, Li Z J, Jiang L, et al. Interface microstructure and thermal expansion mismatch in alloy N/316H bimetallic plates [A]. Proceedings of the ASME 2019 Pressure Vessels & Piping Conference [C]. Texas, San Antonio: ASME, 2019
12 Jing Y A, Qin Y, Zang X M, et al. A novel reduction-bonding process to fabricate stainless steel clad plate [J]. Elsevier B.V., 2014, 617
13 Hedayati O, Korei N, Adeli M, et al. Microstructural evolution and interfacial diffusion during heat treatment of Hastelloy/stainless steel bimetals [J]. Elsevier B.V., 2017, 712
14 Xie G G, Luo Z G, Wang G G, et al. Interface Characteristic and Properties of Stainless Steel/HSLA Steel Clad Plate by Vacuum Rolling Cladding [J]. The Japan Institute of Metals and Materials, 2011, 52(8)
15 Hashimito Y, Kaname H, Shigeru M, et al. Development of a new low carbon low alloy steel suited to be clad with stainless steel [J]. The Iron and Steel Institute of Japan, 1991, 31(7)
16 Zhu Z C, He Y, Zhang X J, et al. Effect of interface oxides on shear properties of hot-rolled stainless steel clad plate [J]. Elsevier B.V., 2016, 669
17 Wang G L. Research on the Formation and Evolution Mechanism and Process Control of Inclusions at the Composite Interface of Vacuum Hot Rolling [D]. Northeastern University, 2013
17 王光磊. 真空热轧复合界面夹杂物的生成演变机理与工艺控制研究 [D]. 东北大学, 2013
18 Liu B X, Wang S, et al. Interface characteristics and fracture behavior of hot rolled stainless steel clad plates with different vacuum degrees [J]. Elsevier B.V., 2018
19 Atkins P, Paula J d. Atkins Physical Chemistry [M]. Beijing: Higher Education Press, 2006
19 Atkins P, Paula J d. Atkins物理化学 [M]. 北京: 高等教育出版社, 2006
20 Lide D. R. CRC Handbook of Chemistry and Physics. CRC Handbook of Chemistry and Physics [M]. Boca Raton: CRC Press, 2004
21 Ye D L, Hu J H. Practical Inorganic Thermodynamics Data Manual [M]. Beijing: Metallurgical Industry Press, 2002
21 叶大伦, 胡建华. 实用无机物热力学数据手册 [M]. 北京: 冶金工业出版社, 2002
22 Li L, Zhang X J, Liu H Y, et al. The formation mechanism of oxide inclusions in the interface of hot-rolled stainless steel composite plates [J]. Journal of Iron and Steel Research, 2013, 25(01): 43
22 李龙, 张心金, 刘会云, 殷福星. 热轧不锈钢复合板界面氧化物夹杂的形成机制 [J]. 钢铁研究学报, 2013, 25(01): 43
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 陈瑞志, 刘丽荣, 郭圣东, 张迈, 卢广先, 李远, 赵云松, 张剑. 一种6Re/3Ru镍基单晶高温合金微观组织的稳定性和高温持久性能[J]. 材料研究学报, 2023, 37(10): 721-730.
[11] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[12] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[13] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[14] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[15] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.