Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (7): 510-516    DOI: 10.11901/1005.3093.2020.274
  研究论文 本期目录 | 过刊浏览 |
第一代单晶高温合金中温高应力幅下的疲劳裂纹萌生行为
黄亚奇1,2, 王栋1, 卢玉章1, 熊英3, 申健1()
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.中国航发南方工业有限公司 株洲 412002
Fatigue Crack Initiation Behavior at Intermediate Temperature under High Stress Amplitude for Single Crystal Superalloy DD413
HUANG Yaqi1,2, WANG Dong1, LU Yuzhang1, XIONG Ying3, SHEN Jian1()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.AECC South Industry Company Limited, Zhuzhou 412002, China
引用本文:

黄亚奇, 王栋, 卢玉章, 熊英, 申健. 第一代单晶高温合金中温高应力幅下的疲劳裂纹萌生行为[J]. 材料研究学报, 2021, 35(7): 510-516.
Yaqi HUANG, Dong WANG, Yuzhang LU, Ying XIONG, Jian SHEN. Fatigue Crack Initiation Behavior at Intermediate Temperature under High Stress Amplitude for Single Crystal Superalloy DD413[J]. Chinese Journal of Materials Research, 2021, 35(7): 510-516.

全文: PDF(2538 KB)   HTML
摘要: 

通过应力控制的疲劳实验探究第一代镍基单晶高温合金DD413在中温(760℃)高应力幅下的疲劳裂纹萌生行为,并使用扫描电子显微镜观察和表征了疲劳样品的断口形貌和纵截面的显微组织。结果表明:在高应力幅条件下,疲劳裂纹主要萌生于表面开裂的块状碳化物和次表面开裂的骨架状碳化物。在疲劳过程中,氧化和循环加载的共同作用使样品表面的碳化物都发生了开裂。在样品的次表面,只有位于表面微裂纹扩展路径上的碳化物发生开裂,其原因也与氧化和循环加载有关。样品表面产生的微裂纹,是次表面碳化物发生氧化所需氧气的运输通道。在疲劳的早期阶段碳化物即发生开裂并产生微裂纹,最终使样品发生疲劳断裂。

关键词 金属材料单晶高温合金高应力幅碳化物开裂疲劳裂纹萌生    
Abstract

The fatigue crack initiation behavior of a single crystal superalloy DD413 was investigated under high stress amplitude at intermediate temperature. The fracture surfaces and longitudinal section morphologies of the test specimens were characterized by scanning electron microscope (SEM). It was found that fatigue cracks mostly initiate from the cracked blocky carbides on the surface as well as the cracked skeleton-like carbides at subsurface. All the carbides on the surface of testing specimen crack due to the combined effect of oxidation and cyclic loading. Besides, at the subsurface of testing specimen, the carbides located on the propagation path of a micro-crack can crack as a result of oxidation and cyclic loading. The micro-crack connected to the surface in the specimen is the transportation channel of oxygen for the oxidation of the carbides at the subsurface. Carbides cracked and the micro-crack initiated at the early stage of fatigue, which induced the final failure.

Key wordsmetallic materials    single crystal superalloy    high stress amplitude    carbide cracking    fatigue crack initiation
收稿日期: 2020-07-06     
ZTFLH:  TG403.4050  
基金资助:国家自然科学基金(51631008);国家重大科技专项(2017-VII-0008-0101);中国科学院重点部署项目(ZDRW-CN-2019-01)
作者简介: 黄亚奇,男,1992年生,博士
AlloyCCrCoWMoAlTiTaNi
DD4130.0512.09.04.02.03.44.05.0Bal.
表1  实验用高温合金的名义成分
图1  疲劳实验前合金的显微组织
图2  疲劳寿命与应力幅之间的关系
图3  疲劳断裂后样品的表面形貌和断口形貌
图4  疲劳样品表面碳化物的纵截面形貌和EDS线扫结果
图5  磨抛样品在760℃热暴露30 min后样品表面碳化物的形貌
图6  MC碳化物开裂过程的示意图
图7  样品次表面碳化物纵截面的形貌
图8  疲劳断裂后样品S5中的显微孔洞形貌
1 Reed R C, Tao T, Warnken N. Alloys-by-design: application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5898
2 Sun X F, Jin T, Zhou Y Z, et al. Research progress of nickel-base single crystal superalloys [J]. Mater. Chin., 2012, 31(12): 1
2 孙晓峰, 金涛, 周亦胄等. 镍基单晶高温合金研究进展 [J]. 中国材料进展, 2012, 31(12): 1
3 Wang L, Zhou Z J, Jiang W G, et al. Effect of secondary orientation on thermal fatigue behavior of a nickel-base single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2014, 28: 663
3 王莉, 周忠娇, 姜卫国等. 第二取向对镍基单晶高温合金DD33热疲劳性能的影响 [J]. 材料研究学报, 2014, 28: 663
4 Zhang Y L, Wang X G, Li J G, et al. The low-cycle fatigue deformation mechanisms of two single crystal superalloys at room temperature and 600℃ [J]. Scr. Mater., 2019, 171: 122
5 Ormastroni L M B, Suave L M, Cervellon A, et al. LCF, HCF and VHCF life sensitivity to solution heat treatment of a third-generation Ni-based single crystal superalloy [J]. Int. J. Fatigue, 2020, 130: 105247
6 Rémy L, Geuffrard M, Alam A, et al. Effects of microstructure in high temperature fatigue: lifetime to crack initiation of a single crystal superalloy in high temperature low cycle fatigue [J]. Int. J. Fatigue, 2013, 57: 37
7 Hang X P, Wang C H, Chen W, et al. Investigation of short fatigue cracks in nickel-based single crystal superalloy SC16 by in-situ SEM fatigue testing [J]. Scr. Mater., 2001, 44: 2443
8 Ma X F, Shi H J. In situ SEM studies of the low cycle fatigue behavior of DZ4 superalloy at elevated temperature: effect of partial recrystallization [J]. Int. J. Fatigue, 2014, 61: 255
9 Cervellon A, Hémery S, Kürnsteiner P, et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature [J]. Acta Mater., 2020, 188: 131
10 Ruttert B, Meid C, Roncery L M, et al. Effect of porosity and eutectics on the high-temperature low-cycle fatigue performance of a nickel-base single-crystal superalloy [J]. Scr. Mater., 2018, 155: 139
11 Morrissey R J, John R, Porter III W J. Fatigue variability of a single crystal superalloy at elevated temperature [J]. Int. J. Fatigue, 2009, 31: 1758
12 Cervellon A, Cormier J, Mauget F, et al. Very high cycle fatigue of Ni-based single-crystal superalloys at high temperature [J]. Metall. Mater. Trans., 2018, 49A: 3938
13 Lamm M, Singer R F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483 [J]. Metall. Mater. Trans., 2007, 38A: 1177
14 Cervellon A, Cormier J, Mauget F, et al. VHCF life evolution after microstructure degradation of a Ni-based single crystal superalloy [J]. Int. J. Fatigue, 2017, 104: 251
15 Yi J Z, Torbet C J, Feng Q, et al. Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000℃ [J]. Mater. Sci. Eng., 2007, 443A: 142
16 Liu Y H, Kang M D, Wu Y, et al. Effects of microporosity and precipitates on the cracking behavior in polycrystalline superalloy Inconel 718 [J]. Mater. Charact., 2017, 132: 175
17 Li J R, Xie H J, Han M, et al. High cycle fatigue behavior of second generation single crystal superalloy [J]. Acta Metall. Sin., 2019, 55: 1195
17 李嘉荣, 谢洪吉, 韩梅等. 第二代单晶高温合金高周疲劳行为研究 [J]. 金属学报, 2019, 55: 1195
18 Reuchet J, Remy L. Fatigue oxidation interaction in a superalloy—application to life prediction in high temperature low cycle fatigue [J]. Metall. Mater. Trans., 1983, 14A: 141
19 Connolley T, Reed P A S, Starink M J. Short crack initiation and growth at 600℃ in notched specimens of Inconel 718 [J]. Mater. Sci. Eng., 2003, 340A: 139
20 Kontis P, Alabort E, Barba D, et al. On the role of boron on improving ductility in a new polycrystalline superalloy [J]. Acta Mater., 2017, 124: 489
21 Kontis P, Collins D M, Wilkinson A J, et al. Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation [J]. Scr. Mater., 2018, 147: 59
22 Suave L M, Muñoz A S, Gaubert A, et al. Thin-wall debit in creep of DS200 + Hf alloy [J]. Metall. Mater. Trans., 2018, 49A: 4012
23 Reed P A S. Fatigue crack growth mechanisms in superalloys: overview [J]. Mater. Sci. Technol., 2009, 25: 258
24 Pineau A, McDowell D L, Busso E P, et al. Failure of metals II: Fatigue [J]. Acta Mater., 2016, 107: 484
25 Lukáš P, Kunz L. Cyclic slip localisation and fatigue crack initiation in fcc single crystals [J]. Mater. Sci. Eng., 2001, 314A: 75
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.