|
|
快重离子辐照对氧化锌材料内部结构特性的影响 |
宋银1,2( ),吕康源1,2,张胜霞1,2 |
1. 中国科学院近代物理研究所 兰州 730000 2. 中国科学院大学核科学与技术学院 北京 100049 |
|
Microstructure of Zinc Oxide Irradiated with Swift Heavy Ions Beam |
SONG Yin1,2( ),LV Kangyuan1,2,ZHANG Shenxia1,2 |
1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 2. School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijin 100049, China |
引用本文:
宋银,吕康源,张胜霞. 快重离子辐照对氧化锌材料内部结构特性的影响[J]. 材料研究学报, 2020, 34(1): 16-20.
Yin SONG,
Kangyuan LV,
Shenxia ZHANG.
Microstructure of Zinc Oxide Irradiated with Swift Heavy Ions Beam[J]. Chinese Journal of Materials Research, 2020, 34(1): 16-20.
[1] | Mina Sorbiun, Ebrahim Shayegan Mehr, Ali Ramazani, et al. Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye [J]. J Mater Sci: Mater Electron, 2018, 29: 2806 | [2] | Ozgur U, Alivov YI, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J Appl Phys, 2005, 98: 41301 | [3] | M. M. Mikhailov, V. V. Neshchimenko, C. Li, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms [J]. Volume418(2018), P18-26 | [4] | S. Xu, Y. Qin, C. Xu, et al. Self-powered nanowire devices [J]. Nat. Nanotechnol, 2010, 5: 366 | [5] | M. Dutaa, D. Perniua, A. Dutaa, Photocatalytic zinc oxide thin films obtained by surfactant assistedspray pyrolysis deposition [J]. Applied Surface Science, 2014, 306: 80 | [6] | Fouran Singh, R. G. Singh, Vinod Kumar, et al. Softening of phonons by lattice defects and structural strain in heavy ion irradiated nanocrystalline zinc oxide films [J]. JOURNAL OF APPLIED PHYSICS, 2011, 110: 083520 | [7] | Sebiha Rehman, R. G. Singh, J. C. Pivin, et al. Structural and spectroscopic modifications of nanocrystalline zinc oxide films induced by swift heavy ions [J]. Vacuum 86 (2011) 87-90 | [8] | Huang X H, Chen R, Zhang C, et al. Ultrafast and Robust UV Luminescence from Cu-Doped ZnO Nanowires Mediated by Plasmonic Hot Electrons [J]. Adv. Optical Mater., 2016, 4: 960 | [9] | X. H. Huang, Z. Y. Zhan, K. P. Pramoda, et al. Correlating the enhancement of UV luminescence from solution-grown ZnO nanorods with hydrogen doping [J]. Cryst Eng Comm, 2012, 14: 5163 | [10] | S. Pal, A. Sarkar, S. Chattopadhyay, et al. Defects in 700 keV oxygen ion irradiated ZnO [J]. Nuclear Instruments and Methods in Physics Research B, 2013, 311: 20 | [11] | Crupi I, Boscarino S, Strano V, et al. Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes [J]. Thin Solid Films, 2012, 520: 4432 | [12] | Choi K-H, Nam H-J, Jeong J-A, et al. Highly flexible and transparent InZnSnOx/Ag/InZnSnOx multilayer electrode for flexible organic light emitting diodes [J]. Appl Phys Lett, 2008, 92: 223302 | [13] | W. L. Li, Q. Y. Hou, X. F. Jia, et al. Effects of La Doping and Zn or O Vacancy on the Magnetic Property of ZnO [J]. Journal of Superconductivity and Novel Magnetism, 2018: 1 | [14] | A. F. Jaramillo, R. Baez-Cruz, L.F. Montoya, Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy [J]. Ceramics International, 2017, 43: 11838 | [15] | J. Serrano, A. H. Romero, F. J. Manjon, et al. Pressure dependence of the lattice dynamics of ZnO:An ab initio approach [J]. Phys. Rev. B,69 (2004) 094306: 1-14 | [16] | R. Loudon, The Raman effect in crystals [J]. Adv. Phys, 1964, 13: 423 | [17] | B Tell, TC Damen, SPS Porto, Raman Effect in cadmium sulfide [J]. Phy. Rev., 1966, 142: 570 | [18] | Song Y, Gou J, Yang Y T, et al. Microstructure property study of ZnO single crystal irradiated with 200 MeV Kr ions [J]. Mater. Res. Express, 2019, 6: 026203 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|