|
|
显微带细化组织和两相组织对低Cr合金钢高温断裂行为的影响 |
程磊( ),余伟,蔡庆伍 |
北京科技大学 工程技术研究院 北京 100083 |
|
Influence of Microbands Refined Microstructure and Two Phase Microstructure on High Temperature Fracture Behaviors of a Low Cr Alloy Steel |
CHENG Lei( ),YU Wei,CAI Qingwu |
Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
程磊,余伟,蔡庆伍. 显微带细化组织和两相组织对低Cr合金钢高温断裂行为的影响[J]. 材料研究学报, 2020, 34(1): 21-28.
Lei CHENG,
Wei YU,
Qingwu CAI.
Influence of Microbands Refined Microstructure and Two Phase Microstructure on High Temperature Fracture Behaviors of a Low Cr Alloy Steel[J]. Chinese Journal of Materials Research, 2020, 34(1): 21-28.
[1] | Shi Y L, Zuo Y, Meng Y R. Historical track and prospect of China's thermal power industry [J]. Sci. Technol. Manag. Res., 2017, 37(16): 136 | [1] | (施应玲, 左艺, 孟雅儒. 中国火电产业的历史轨迹与发展展望 [J]. 科技管理研究, 2017, 37(16): 136) | [2] | Liu R W, Xiao P, Zhong L, et al. Research progress of advanced 700℃ ultra-supercritical coal-fired power generation technology [J]. Therm. Power Generat., 2017, 46(9): 1 | [2] | (刘入维, 肖 平, 钟 犁等. 700℃超超临界燃煤发电技术研究现状 [J]. 热力发电, 2017, 46(9): 1) | [3] | Di Gianfrancesco A. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants [M]. Duxford: Woodhead Publishing, 2017: 82 | [4] | Sha W S, Wang W W, Yang K Y, et al. 9-12Cr Heat-resistant Steels [M]. Cham: Springer, 2015: 27 | [5] | Pandey C, Mahapatra M M, Kumar P, et al. Some studies on P91 steel and their weldments [J]. J. Alloys Compd., 2018, 743: 332 | [6] | Wang H, Yan W, Van Zwaag S, et al. On the 650℃ thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143 | [7] | Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110 | [8] | Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130 | [9] | Cheng L, Yu W, Cai Q W, et al. Effects of prior microstructures and deformation parameters on the ultra-refining uniformity of Ti-Mo ferritic steel [J]. Mater. Sci. Eng., 2018, 733A: 108 | [10] | Cheng L, Cai Q W, Dong E T, et al. Influence of ferrite matrix and precipitation status on the mechanical properties of low carbon low alloy steel during high temperature tension [J]. Mater. Sci. Eng., 2016, 678A: 1 | [11] | Park H W, Yanagimoto J. Formation and mechanical properties of bimodal microstructures in 0.2% carbon steel by heavy-reduction hot/warm compression [J]. Procedia Eng., 2014, 81: 462 | [12] | Eghbali B. Study on the ferrite grain refinement during intercritical deformation of a microalloyed steel [J]. Mater. Sci. Eng., 2010, 527A: 3407 | [13] | Cheng L, Chen Y L, Cai Q W, et al. Precipitation enhanced ultragrain refinement of Ti-Mo microalloyed ferritic steel during warm rolling [J]. Mater. Sci. Eng., 2017, 698A: 117 | [14] | Choi J K, Seo D H, Lee J S, et al. Formation of ultrafine ferrite by strain-induced dynamic transformation in plain low carbon steel [J]. ISIJ Int., 2003, 43: 746 | [15] | Cheng L, Cai Q W, Lv J L, et al. Superdense microbands strengthening of textured low alloy ferritic steel [J]. J. Alloys Compd., 2018, 746: 482 | [16] | Yanushkevich Z, Belyakov A, Kaibyshev R. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273K [J]. Acta Mater., 2015, 82: 244 | [17] | Yan H T, Bi H Y, Li X, et al. Microstructure and texture of Nb+Ti stabilized ferritic stainless steel [J]. Mater. Charact., 2008, 59: 1741 | [18] | Hosford W F. Mechanical Behavior of Materials [M]. Cambridge: Cambridge University Press, 2010: 133 | [19] | De Geus T W J, Maresca F, Peerlings R H J, et al. Microscopic plasticity and damage in two-phase steels: On the competing role of crystallography and phase contrast [J]. Mech. Mater., 2016, 101: 147 | [20] | Li Y C, Yan W, Cotton J D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species [J]. Mater. Des., 2015, 82: 56 | [21] | Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides [J]. ISIJ Int., 2004, 44: 1945 | [22] | Jayan V, Khan M Y, Husain M. Coarsening of nano sized carbide particles in 2.25Cr-1Mo power plant steel after extended service [J]. Mater. Lett., 2004, 58: 2569 | [23] | Verma P, Basu J, Srinivas N C S, et al. Deformation behavior of modified 9Cr-1Mo steel under low cycle fatigue at 600℃ [J]. Mater. Charact., 2017, 131: 244 | [24] | Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|