Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (5): 361-367    DOI: 10.11901/1005.3093.2019.167
  研究论文 本期目录 | 过刊浏览 |
SiC泡沫陶瓷/球墨铸铁双连续相复合材料的气固两相流冲蚀性能
万伟1,2, 曹小明1, 张劲松1()
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Erosion Performance for Co-continuous Phase Composite of SiC Foam Ceramic/Ductile Iron
WAN Wei1,2, CAO Xiaoming1, ZHANG Jinsong1()
1.Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China
2.School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,China
引用本文:

万伟, 曹小明, 张劲松. SiC泡沫陶瓷/球墨铸铁双连续相复合材料的气固两相流冲蚀性能[J]. 材料研究学报, 2020, 34(5): 361-367.
Wei WAN, Xiaoming CAO, Jinsong ZHANG. Erosion Performance for Co-continuous Phase Composite of SiC Foam Ceramic/Ductile Iron[J]. Chinese Journal of Materials Research, 2020, 34(5): 361-367.

全文: PDF(4324 KB)   HTML
摘要: 

将SiC泡沫陶瓷氧化后用挤压铸造法制备了SiC泡沫陶瓷/球墨铸铁(DI)双连续相复合材料(SiCfoam/DI)。使用气固两相流冲蚀磨损试验机对比研究了冲蚀时间(t)、粒子速度(ν)和冲蚀角度(α)对SiC颗粒/球墨铸铁复合材料(SiCp/DI)、SiCfoam/DI复合材料和DI冲蚀性能的影响,并分析了冲蚀机理。结果表明:随着冲蚀时间的增加三种材料的冲蚀速率逐渐减小并趋于稳定;随着粒子冲击速度的提高DI的冲蚀速率逐渐增加,冲蚀速率与ν2.95成正比;在冲击速度小于87.5 m/s时SiCp/DI和SiCfoam/DI复合材料的冲蚀速率相近,冲击速度大于87.5 m/s时SiCp/DI复合材料的冲蚀速率明显地比SiCfoam/DI复合材料的高。随着冲蚀角度的增大DI呈现出脆性材料的冲蚀特征,SiCp/DI和SiCfoam/DI表现出典型的塑性材料的冲蚀特征,最大冲蚀速率对应的冲蚀角为45°。低角度时DI的冲蚀机理为微切削,高角度时为冲蚀坑和微裂纹。用高速粒子冲击时,由于SiC泡沫陶瓷的整体增强作用和阴影保护效应,SiCfoam/DI比SiCP/DI和DI具有更高的抗冲蚀磨损性能。

关键词 复合材料气固两相流冲蚀磨损SiC泡沫陶瓷/球墨铸铁    
Abstract

Co-continuous phase composite of SiC foam ceramic/ductile iron (DI) (SiCfoam/DI) was prepared by extrusion casting with the oxidized SiC foam ceramic as reinforcer, while the bare DI and composite of SiCparticles/ID were taken as comparison. The gas-solid two-phase flow induced erosion behavior of the three materials was assessed via a home-made gas-solid two-phase flow erosion tester, so that to reveal the effect of the erosion time (t), particle velocity (ν) and erosion angle (α), as well as the relevant erosion mechanisms. The results show that with the increasing erosion time, the erosion rate of the three materials decreased gradually and then down to a stable level. With the increase of particle impact velocity the erosion rate of DI increased gradually, and the erosion rate is proportional to ν2.95. While composites of SiCParticles/DI and SiCfoam/DI had similar erosion rates when the impact velocity was less than 87.5 m/s. When the impact velocity was greater than 87.5 m/s, the erosion rate of SiCParticles/DI was significantly higher than that of SiCfoam/DI. With the increase of erosion angle, DI exhibited erosion characteristics of brittle material, but SiCParticles/DI and SiCfoam/DI composites exhibited typical erosion characteristics of plastic material. The maximum erosion rate corresponded to the erosion angle 45°. The erosion mechanism of DI was micro-cutting at low angle, while erosion pitting and micro-cracking at high angle. For high-speed particle impact, SiCfoam/DI composite had better erosion- and wear-resistance than that of SiCParticles/DI composite and DI due to the overall reinforcement and shadow protection of SiC foam ceramics.

Key wordscomposite    gas solid two phase flow    erosion    SiC foam ceramic/ductile iron
收稿日期: 2019-03-22     
ZTFLH:  TB333  
基金资助:国家高技术研究发展计划(2012AA03A508)
作者简介: 万 伟,男,1992年生,硕士
图1  复合材料SiCfoam/DI的制备工艺
图2  实验装置示意图
图3  靶台示意图
图4  三种材料α=30°、ν=75 m/s时的冲蚀速率随冲蚀时间的变化
图5  三种材料ν=100 m/s时的冲蚀速率随冲蚀角度的变化
图6  三种材料α=30°时的冲蚀速率随粒子冲击速度的变化
图7  α=30°、ν=75 m/s和α=90°、ν=75 m/s时DI的冲蚀形貌
图8  SiCP/DI复合材料α=30°、ν=100 m/s时的冲蚀形貌
图9  SiCfoam/DI复合材料α=30°、ν=100 m/s时的冲蚀形貌
图10  复合材料SiCP/DI和SiCfoam/DI的冲蚀磨损示意图
[1] Praveen A. S, Sarangan J, Suresh S,et al. Optimization and erosion wear response of NiCrSiB/WC-Co HVOF coating using Taguchi method [J]. Ceram. Int., 2016, 42(1): 1094
[2] Rawat A, Singh S. N, Seshadri V. Erosion wear studies on high concentration fly ash slurries [J]. Wear, 2017, 378-379: 114
[3] Chang Q M, Zhang G J, Wang Y F. Recent progress of research on wear resistant metal materials [J]. Gansu Metallurgy, 2007, 29(2): 1-3+7
[3] (邱常明, 张贵杰, 王彦风. 耐磨金属材料的最新研究进展 [J]. 甘肃冶金, 2007, 29(2): 1-3+7)
[4] Du J, Chong X Y, Jiang Y H, et al. Numerical simulation of mold filling process for high chromium cast iron matrix composite reinforced by ZTA ceramic particles [J]. Int. J. Heat Mass Tran., 2015, 89: 872
[5] Sui Y D, Zhou M J, Jiang Y H. Characterization of interfacial layer of ZTA ceramic particles reinforced iron matrix composites [J]. J. Alloys Compd., 2018, 741: 1169
[6] Zhou M J, Sui Y D, Chong X Y, et al. Wear resistance mechanism of ZTAP/HCCI composites with a honeycomb structure [J]. Metals, 2018, 8(8): 1
[7] Wei X M. Fabrication and tribological properties of Ti3AlC2/Cu co-continuous composites [D]. Beijing: Beijing Jiaotong University, 2016
[7] (位兴民. 双连续相Ti3AlC2/Cu复合材料的制备及摩擦学性能研究 [D]. 北京: 北京交通大学, 2016)
[8] Cree D, Pugh M. Dry wear and friction properties of an A356/SiC foam interpenetrating phase composite [J]. Wear, 2011, 272(1): 88
[9] Jiang L, Jiang Y L, Yu L, et al. Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling [J]. Trans. Nonferrous Met. Soc., 2012, 22(11): 2783
[10] Jiang L, Jiang Y L, Yu L, et al. Experimental study and numerical analysis on dry friction and wear performance of co-continuous SiC/Fe-40Cr against SiC/2618 Al alloy composites [J]. Trans. Nonferrous Met. Soc., 2012, 22(12): 2913
[11] Wang B, Xu Z Y, Lu W Z, et al. Effect of porous Si3N4 preform on the mechanical properties of Si3N4/Al composites with interpenetrating network structure [J]. Mater. Sci. Eng. A, 2014, 607(23): 307
[12] Lu Y, Yang J F, Lu W Z, et al. The mechanical properties of co-continuous Si3N4/Al composites manufactured by squeeze casting [J]. Mater. Sci. Eng. A, 2010, 527(23): 6289
[13] Wang L F, Jacky L, Edwin L T, et al. Co-Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation [J]. Adv. Mater., 2011, 23(13): 1524
doi: 10.1002/adma.201003956
[14] Liu Q, Ye F, Gao Y, et al. Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties [J]. J. Alloys and Comp., 2014, 585:146
[15] Du Q, Gao Y, Ren Z H, et al. Preparation and Erosion Performance for Co-continuous Phase Composites of Si3N4/1Cr18Ni9Ti [J]. Chinese Journal of Materials Research, 2019, 33(1): 34
[15] (杜奇, 高勇, 任志恒等. 双连续Si3N4/1Cr18Ni9Ti复合材料的制备和冲蚀性能 [J]. 材料研究学报, 2019, 33(1): 34)
[16] Chen L. Study on the preparation technology and performance of 3D-reticulated porous SiC/Fe composite material [D]. Wuhan: Wuhan University of Science and Technology, 2018
[16] (陈 亮. 三维网络结构SiC/Fe基复合材料的制备工艺和性能研究 [D]. 武汉: 武汉科技大学, 2018)
[17] Zhong Z H, Hinoki T, Jung H C, et al. Microstructure and mechanical properties of diffusion bonded SiC/steel joint using W/Ni interlayer [J]. Mater. Des., 2010, 33(3): 1070
[18] Prabhu T. R, Varma V. K, Vedantam S. Effect of SiC volume fraction and size on dry sliding wear of Fe/SiC/graphite hybrid composites for high sliding speed applications [J]. Wear, 2014, 309(1-2): 1
[19] Tang W M, Zheng Z X, Ding H F, et al. Control of the interface reaction between silicon carbide and iron [J]. Mater. Chem. Phys., 2003, 80(1): 360
[20] Ren Z H, Jin P, Cao X M, et al. Preparation and performance of SiC foam ceramic/Fe matrix co-continuous phase composites [J]. Chinese Journals of Materials Research, 2014, 28(11): 814
[20] (任志恒, 金鹏, 曹小明等. SiC泡沫陶瓷/Fe基双连续相复合材料的制备和性能 [J]. 材料研究学报, 2014, 28(11): 814)
[21] Dong G, Zhang J Y. Developments of research on the solid particle erosion of materials [J]. Journal of Materials Science and Engineering, 2003, 21(2): 307
[21] (董刚, 张九渊. 固体粒子冲蚀磨损研究进展 [J]. 材料科学与工程学报, 2013, 21(2): 307)
[22] Liu R H. The optimal selection of wear resistant materials for powder pipe transportation by investigating their blasting erosion behaviors [D]. Shenyang: Chinese Academy of Science, 2005
[22] (刘荣华. 粉料输送管道用材的冲蚀行为及优选研究 [D]. 沈阳: 中国科学院大学, 2005)
[23] Yu X Y, Hua Z X. Effect of austempering heat treatment on erosive wear of austenite ductile iron [J]. Material & Heat Treatment, 2009, 38(4): 88
[23] (于学勇, 华征潇. 等温淬火处理对奥贝球铁冲刷磨损性能的影响 [J]. 材料热处理技术, 2009, 38(4): 88)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.