Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (6): 452-460    DOI: 10.11901/1005.3093.2018.506
  研究论文 本期目录 | 过刊浏览 |
微观组织演变对细晶Mg-Y-Nd合金超塑性性能的影响
曹耿华,郑振兴(),刘一雄,王敏,李纬华
广东技术师范大学机电学院 广州 510635
Influence of Microstructure Evolution on Superplastic Properties of Fine-grained Mg-Y-Nd Alloy
Genghua CAO,Zhenxing ZHENG(),Yixiong LIU,Min WANG,Weihua LI
School of Mechanical and Electronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510635, China
引用本文:

曹耿华,郑振兴,刘一雄,王敏,李纬华. 微观组织演变对细晶Mg-Y-Nd合金超塑性性能的影响[J]. 材料研究学报, 2019, 33(6): 452-460.
Genghua CAO, Zhenxing ZHENG, Yixiong LIU, Min WANG, Weihua LI. Influence of Microstructure Evolution on Superplastic Properties of Fine-grained Mg-Y-Nd Alloy[J]. Chinese Journal of Materials Research, 2019, 33(6): 452-460.

全文: PDF(41394 KB)   HTML
摘要: 

在初始应变速率为2×10-2~4×10-4 s-1,温度为683~758 K的条件下,对用水下搅拌摩擦加工制备的细晶Mg-Y-Nd合金进行高温拉伸实验,研究了微观组织演变对其超塑性性能的影响。结果表明:因为具有细小均匀的微观组织和良好的热稳定性,Mg-Y-Nd合金在733 K和3×10-3 s-1初始应变速率下表现出最大的伸长率(967%),在758 K和2×10-2 s-1条件下表现出最优的高应变速率超塑性(900%)。在高温下暴露时间过长导致α-Mg晶粒和第二相颗粒显著长大,使试样的伸长率明显降低;因为第二相颗粒与镁基体之间有良好的变形协调性,在相界处不会产生明显的应力集中,裂纹主要在晶界生成。

关键词 金属材料Mg-Y-Nd合金搅拌摩擦加工超塑性变形微观组织    
Abstract

Superplastic performance of the submerged friction stir processed Mg-Y-Nd alloy was assessed by initial strain rates in range of 2×10-2 to 4×10-4 s-1 at temperatures in range of 683 to 758 K, aiming to reveal the correlation of the microstructure evolution and the superplastic performance of the alloy. Results show that due to the fine-grained and stable microstructure, the alloy exhibits the maximum elongation of 967% by strain rate of 3×10-3 s-1 at 733 K, and the excellent high strain rate superplasticity of 900% by 2×10-2 s-1 at 758 K respectively. The average size of α-Mg grains and secondary phase particles remarkably increased when the alloy subjected to high temperature tensile tests for long time, as a result, the elongation of the alloy significantly decreased. Cavities easily formed at grain boundaries instead of the interface of secondary particles and matrix, which may be responsible to the good deformation compatibility between particles and matrix.

Key wordsmetallic materials    Mg-Y-Nd alloy    friction stir processing    superplastic deformation    microstructure
收稿日期: 2018-08-16     
ZTFLH:  TG146.22  
基金资助:广东省自然科学基金(2017A030310630);广东省省级科技计划(2017A070715012);广东省创新强校项目(2017KTSCX115);广东省创新强校项目(2015KTSCX084)
作者简介: 曹耿华,男,1986年生,博士,讲师
图1  高温拉伸断裂试样的夹持区域、标距区域和裂纹尖端取样位置
图2  铸态和SFSP试样的典型微观组织图片
图3  SFSP试样在不同测试条件下的高温拉伸宏观形貌
图4  在不同测试条件下夹持区域的微观组织形貌
图5  不同测试条件下标距区域的晶粒组织形貌
图6  不同测试条件下标距区域的第二相颗粒形貌
图7  SFSP试样在不同测试条件下的超塑性性能和微观组织演变数据汇总
图8  不同测试条件下标距区域的表面形貌
图9  在733 K和4×10-4 s-1条件下断裂试样近裂纹尖端区域的表面形貌
[1] Kaibyshev R, Sakai T, Musin F, et al. Superplastic behavior of a 7055 aluminum alloy [J]. Scripta Mater., 2001, 45: 1373
[2] Langdon T G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement [J]. Acta Mater., 2013, 61: 7035
[3] Chen Z H, Liu J W, Chen D, et al. Deformation mechanisms, current status and development direction of superplastic magnesium alloys [J]. Chin. J. Nonferrous Met., 2008, 18: 193
[3] (陈振华, 刘俊伟, 陈 鼎等. 镁合金超塑性的变形机理、研究现状及发展趋势 [J]. 中国有色金属学报, 2008, 18: 193)
[4] Kandalam S, Sabat R K, Bibhanshu N, et al. Superplasticity in high temperature magnesium alloy WE43 [J]. Mater. Sci. Eng., 2017, 687A: 85
[5] Chen F F, Huang H J, Xue P, et al. Research progress on microstructure and mechanical properties of friction stir processed ultrafine-grained materials [J]. Chin. J. Mater. Res., 2018, 32(1): 1
[5] (陈菲菲, 黄宏军, 薛 鹏等. 搅拌摩擦加工超细晶材料的组织和力学性能研究进展 [J]. 材料研究学报, 2018, 32(1): 1)
[6] Hofmann D C, Vecchio K S. Submerged friction stir processing (SFSP): An improved method for creating ultra-fine-grained bulk materials [J]. Mater. Sci. Eng., 2005, 402A: 234
[7] Cao G H, Zhang D T, Luo X C, et al. Effect of aging treatment on mechanical properties and fracture behavior of friction stir processed Mg-Y-Nd alloy [J]. J. Mater. Sci., 2016, 51: 7571
[8] Chai F, Zhang D T, Zhang W W, et al. Microstructure evolution during high strain rate tensile deformation of a fine-grained AZ91 magnesium alloy [J]. Mater. Sci. Eng., 2014, 590A: 80
[9] Wang X, Chen D, Xiao D, et al. Superplasticity of Mg-Al-Ca alloys with high Ca/Al ratio [J]. Mater. Rev., 2016, 30(10): 71
[9] (王 新, 陈 鼎, 肖 迪等. 高Ca/Al比的Mg-Al-Ca合金的超塑性 [J]. 材料导报, 2016, 30(10): 71)
[10] Kim W J, Lee K E, Park J P, et al. Microstructure and superplasticity of Mg-Al-Ca electromagnetic casting alloys after hot extrusion [J]. Mater. Sci. Eng., 2008, 494A: 391
[11] Frost H J, Ashby M F. Deformation-Mechanism Maps [M]. Oxford, UK: Pergamon Press, 1982
[12] Kim W J, Moon I K, Han S H. Ultrafine-grained Mg-Zn-Zr alloy with high strength and high-strain-rate superplasticity [J]. Mater. Sci. Eng., 2012, 538A: 374
[13] Watanabe H, Mukai T, Ishikawa K, et al. Realization of high strain rate superplasticity at low temperatures in a Mg-Zn-Zr alloy [J]. Mater. Sci. Eng., 2001, 307A: 119
[14] Barnes A J. Superplastic forming 40 years and still growing [J]. J. Mater. Eng. Perform., 2007, 16: 440
[15] Figueiredo R B, Langdon T G. Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing [J]. Scr. Mater., 2009, 61: 84
[16] Luo Z A, Xie G M, Ma Z Y, et al. Effect of yttrium addition on microstructural characteristics and superplastic behavior of friction stir processed ZK60 alloy [J]. J. Mater. Sci. Technol., 2013, 29: 1116
[17] Tang W N, Chen R S, Han E H. Superplastic behaviors of a Mg-Zn-Y-Zr alloy processed by extrusion and equal channel angular extrusion [J]. J. Alloys Compd., 2009, 477: 636
[18] Yang Q, Xiao B L, Zhang Q, et al. Exceptional high-strain-rate superplasticity in Mg-Gd-Y-Zn-Zr alloy with long-period stacking ordered phase [J]. Scr. Mater., 2013, 69: 801
[19] Li L, Zhang X M, Deng Y L, et al. Effect of second phase on superplastic deformation of extruded rod of Mg-Gd-Y-Zr alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 10
[19] (李 理, 张新明, 邓运来等. 第二相在Mg-Gd-Y-Zr合金挤压棒超塑性变形中的作用 [J]. 中国有色金属学报, 2010, 20: 10)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.