Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (6): 443-451    DOI: 10.11901/1005.3093.2018.474
  研究论文 本期目录 | 过刊浏览 |
TC11钛合金中 α''相和α'相的组织演变和显微硬度
张英东1,2(),李阁平1,刘承泽1,2,袁福森1,2,韩福洲1,2,Ali Muhanmmad1,2,顾恒飞1,3
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 合肥 230026
3. 中国科学院大学 北京 100049
Microstructure Evolution of α''-Phase and α'-Phase and Microhardness of TC11 Titanium Alloy
Yingdong ZHANG1,2(),Geping LI1,Chengze LIU1,2,Fusen YUAN1,2,Fuzhou HAN1,2,Muhanmmad Ali1,2,Hengfei GU1,3
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, 96 JinZhai Road, Baohe District, Hefei, Anhui 230026, China
3. University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
引用本文:

张英东,李阁平,刘承泽,袁福森,韩福洲,Ali Muhanmmad,顾恒飞. TC11钛合金中 α''相和α'相的组织演变和显微硬度[J]. 材料研究学报, 2019, 33(6): 443-451.
Yingdong ZHANG, Geping LI, Chengze LIU, Fusen YUAN, Fuzhou HAN, Muhanmmad Ali, Hengfei GU. Microstructure Evolution of α''-Phase and α'-Phase and Microhardness of TC11 Titanium Alloy[J]. Chinese Journal of Materials Research, 2019, 33(6): 443-451.

全文: PDF(8864 KB)   HTML
摘要: 

研究了TC11钛合金中α"相和α'相的显微组织转变和显微硬度。金相显微组织观察和X射线衍射分析的结果表明: 随着固溶温度的提高α"相逐渐向α'相的晶体结构转变,α相、α"相和α'相的显微组织演变规律为:α+α",α+α"+α',α+α',α'。显微硬度测试的结果表明:在935~995℃固溶后显微硬度随着温度的提高先增大后减少,在985℃固溶后显微硬度达到峰值。综合分析显微组织影响合金显微硬度的机理:在935~985℃固溶后α'片层的厚度和间距变化的幅度小,β转变组织长大缓慢,在β转变组织中先后析出α"和α'相,随着固溶温度的提高α'片层的含量随之提高产生了相变强度效果,使其显微硬度提高;在985~995℃固溶后α'片层的厚度和间距明显增大,β转变组织变粗大,α"相消失,α'相的含量降低,相变强化的效果减弱,使β转变组织的显微硬度降低。

关键词 金属材料TC11钛合金固溶处理显微组织显微硬度    
Abstract

The effect of solution treatment temperature (STT) (ranging from 935°C to 995°C) on the microstructure evolution of α"-phase, α'-phase and microhardness of TC11 titanium alloy were investigated systematically by means of optical microscope, electron microscope with energy dispersive spectroscope, X-ray diffractometer and microhardness tester. Results show that the crystal structure of α"-phase gradually correspond to the crystal structure of the α' phase, and the phase composition of TC11 alloy changes with increasing STT (α+α", α+α"+α', α+α', α'). Microhardness of the alloy solution treated in the temperature range from 935~985°C increased with the solution temperature, whereas the microhardness reduced for further increase of solution temperature up to the range of 985~995°C. Microstructural features resulting from different STTs were correlated with corresponding microhardness values. With the increment of STT the microhardness increased, because the thickness and spacing of α'-lamellae increased slowly and the β-transformed structure grew up slowly. Besides, due to phase transition strengthening (PTS) the α"-phase and α'-phase are precipitated in the β-transformed structure, and the α'-lamellae contents in the β-transformed microstructure increased, eventually reaching a maximum at 985°C. Above 985°C the microhardness decreased, because the thickness and spacing of α'-lamellae increased significantly and the β-transformed structure became coarser at the expense of α'-phase and α"-phase contents.

Key wordsmetallic materials    TC11 titanium alloy    solution treatment    microstructure    microhardness
收稿日期: 2018-07-25     
ZTFLH:  TG146.2  
作者简介: 张英东,男,1994年生,硕士生
The number of sampleSolution temperature/℃Holding time/hCooling
19351WQ
29551WQ
39651WQ
49751WQ
59801WQ
69851WQ
79901WQ
89951WQ
表1  TC11钛合金的固溶处理工艺
图1  固溶处理前TC11钛合金的显微组织
图2  在不同温度固溶处理的TC11钛合金的显微组织
图3  在不同温度固溶处理后TC11钛合金中初生α相的体积百分含量和初生α相的尺寸
图4  在不同温度固溶处理后TC11钛合金在扫描电镜下的显微组织
图5  在不同温度固溶处理的TC11钛合金的XRD谱图
图6  在不同温度固溶处理后β转变组织的维氏硬度
图8  在不同温度固溶处理后α"相晶格常数的变化
图7  在不同温度固溶处理后β转变组织中Mo、Al元素含量的变化
图9  α"相的晶格常数b/a值与固溶温度的关系
图10  α"相的晶格常数c/a值与固溶温度的关系
图11  β相、α"相以及α'相的晶体结构示意图
图12  在不同温度固溶处理后样品中α'片层的含量
图13  在不同温度固溶处理后样品中α'片层的厚度和α'片层的间距
[1] Shang S, Shen J, Wang X, et al. Transformation textures in an α+β, titanium alloy thin sheet [J]. Materials Science & Engineering A, 2002, 326(2): 249
[2] Lineberger L. Titanium aerospace alloy [J]. Advanced Materials & Processes, 1998, 153(5): 45
[3] Boyer R, Welsch G, Collings E W. Materials Properties Handbook: Titanium Alloys [M]. Materials properties handbook: titanium alloys. ASM International, 1994
[4] Peng P W, Ou K L, Chao C Y, et al. Research of microstructure and mechanical behavior on duplex (α+β) Ti-4.8Al-2.5Mo-1.4V alloy [J]. Journal of Alloys & Compounds, 2010, 490(1-2): 661
[5] Yang H, Yao Z, Gao J, et al. Influence of gradient heat treatment on microstructure and microhardness in weld seam of Ti 3 Al/TC11 dual alloys [J]. Rare Metal Materials & Engineering, 2010, 39(1): 22
[6] Tan L, Yao Z, Zhou W, et al. Microstructure and properties of electron beam welded joint of Ti-22Al-25Nb/TC11 [J]. Aerospace Science & Technology, 2010, 14(5): 302
[7] Zhang X Y, Li M Q, Li H, et al. Deformation behavior in isothermal compression of the TC11 titanium alloy [J]. Materials & Design, 2010, 31(6): 2851
[8] Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys [J]. Materials Science and Engineering: A, 1998, 243(1): 32
[9] Poondla N, Srivatsan T S, Patnaik A, et al. A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti-6Al-4V [J]. Journal of Alloys & Compounds, 2009, 486(1-2): 162
[10] Mcquillan M K. Phase Transformations in titanium and its alloys [J]. Metallurgical Reviews, 2013, 8(1): 41
[11] Hao Y L, Yang R, Niinomi M, et al. Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α" martensite [J]. Metallurgical & Materials Transactions A, 2002, 33(10): 3137
[12] Lin D J, Lin J H, Ju C P. Structure and properties of Ti-7.5Mo-xFe alloys [J]. Biomaterials, 2002, 23(8): 1723
[13] Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloys and their Applications [M]. Chemical Industry Press, 2005
[13] 张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 化学工业出版社, 2005
[14] Yang R, Saunders N, Leake J A, et al. Equilibria and microstructural evolution in the β/β'/γ' region of the Ni-Al-Ti system: modelling and experiment [J]. Acta Metallurgica Et Materialia, 1992, 40(7): 1553
[15] Zhang Y, Liu Z Y, Zhao Z S, et al. Preparation of pure a"-phase titanium alloys with low moduli via high pressure solution treatment [J]. Journal of Alloys & Compounds, 2017, 695(1-2): 45
[16] Peng P W, Ou K L, Chao C Y, et al. Research of microstructure and mechanical behavior on duplex (α+β) Ti-4.8Al-2.5Mo-1.4V alloy [J]. Journal of Alloys & Compounds, 2010, 490(1-2): 661
[17] Chung W C, Tsat L W, Chen C. Microstructure and notch properties of heat-treated Ti-4.5 Al-3V-2Mo-2Fe laser welds [J]. Materials transactions, 2009, 50(3): 544
[18] Esmaily M, Mortazavi S N, Todehfalah P, et al. Microstructural characterization and formation of α' martensite phase in Ti-6Al-4V alloy butt joints produced by friction stir and gas tungsten arc welding processes [J]. Materials & Design, 2013, 47: 143
[19] Rechtien J J, Nelson R D. Phase transformations in uranium, plutonium, and neptunium [J]. Metallurgical and Materials Transactions B, 1973, 4(12): 2755
[20] Huang X B. Electron Microscopy Analysis of Microstructure of Materials [M]. Beijing: Metallurgical Industry Press, 2008
[20] 黄孝瑛. 材料微观结构的电子显微学分析 [M]. 北京: 冶金工业出版社, 2008
[21] Inamura T., Kim J. I., Kim H. Y., et al. Composition dependent crystallography of α"-martensite in Ti-Nb-based β-titanium alloy [J]. Philosophical Magazine, 2007, 87(23): 3325
[22] Dobromyslov A V, Elkin V A. The orthorhombic α"-phase in binary titanium-base alloys with d-metals of V-VIII groups [J]. Materials Science & Engineering A, 2006, s438-440: 324
[23] Zhang F, Yu Z, Xiong C, et al. Martensitic transformations and the shape memory effect in Ti-Zr-Nb-Al high-temperature shape memory alloys [J]. Materials Science & Engineering A, 2017, 679: 14
[24] Kharia K K, Rack H J. Martensitic phase transformations in IMI 550 (Ti-4Al-4Mo-2Sn-0.5 Si) [J]. Metallurgical & Materials Transactions A, 2001, 32(13): 671
[25] Yang H, Yao Z, Gao J, et al. Influence of gradient heat treatment on microstructure and microhardness in weld seam of Ti 3 Al/TC11 dual alloys [J]. Rare Metal Materials & Engineering, 2010, 39(1): 22
[26] Wang Y H, Kou H, Chang H, et al. Influence of solution temperature on phase transformation of TC21 alloy [J]. Materials Science & Engineering A, 2009, 508(1-2): 76
[27] Wang X D, Lou H B, Stahl K, et al. Tensile behavior of orthorhombic α"-titanium alloy studied by in situ X-ray diffraction [J]. Materials Science & Engineering A, 2010, 527(24): 6596
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.