Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (6): 461-466    DOI: 10.11901/1005.3093.2018.692
  研究论文 本期目录 | 过刊浏览 |
Technora纤维表面等离子体处理对其复合材料界面性能的影响
贾彩霞1,2,王乾1(),任荣2,孙福宁1
1. 沈阳航空航天大学航空宇航学院 沈阳 110136
2. 先进聚合物基复合材料辽宁省重点实验室 沈阳 110136
Effect of Technora Fiber Surface Plasma Treatment on Its Composite Interface Properties
Caixia JIA1,2,Qian WANG1(),Rong REN2,Funing SUN1
1. College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
2. Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang 110136, China
引用本文:

贾彩霞,王乾,任荣,孙福宁. Technora纤维表面等离子体处理对其复合材料界面性能的影响[J]. 材料研究学报, 2019, 33(6): 461-466.
Caixia JIA, Qian WANG, Rong REN, Funing SUN. Effect of Technora Fiber Surface Plasma Treatment on Its Composite Interface Properties[J]. Chinese Journal of Materials Research, 2019, 33(6): 461-466.

全文: PDF(5267 KB)   HTML
摘要: 

用扫描电子显微镜观察Technora纤维表面物理形貌并测量单丝纤维的拉伸强度以分析等离子体处理对纤维本体性能的影响,再用层间剪切强度和吸水率分别表征复合材料在室温干态和高温湿态下的界面性能,研究了等离子体处理对Technora纤维复合材料界面性能的影响。结果表明,用等离子体处理后纤维表面的物理形貌发生了显著变化,复合材料的层间剪切强度由未处理时的15.74 MPa提高到24.93 MPa,提高的幅度高达58.4%;同时,复合材料的吸水率下降而本体性能基本不受影响。上述结果表明,等离子体对Technora纤维的表面改性能有效地改善其复合材料的界面性能。

关键词 复合材料Technora纤维等离子体表面形貌界面性能    
Abstract

Technora fiber was surface modified by plasma treatment, and then characterized by means of scanning electron microscope and single fiber tensile strength tester in terms of the fiber surface morphologies and the properties of fiber itself, respectively. Then the influence of plasma treatment on the interfacial property of Technora fiber/epoxy resin in their composites in both room temperature dry (RTD) and elevated temperature wet (ETW) conditions was assessed based on the relevant values of interlamilar shear strength and water absorption. The results show that the plasma treatment had a great influence on the surface morphology of Technora fiber. Therefore, the interlamilar shear strength of Technora/Epoxy composites with the surface modified fiber is 24.93 MPa, which increases by 58.4% in comparison to 15.74 MPa for the composite with the as received fiber, correspondingly, the ability of water absorption of the composite decreased. However, the surface modification exhibits little effect on the property of the fiber itself. It is concluded that the surface plasma treatment of the Technora fiber is a significantly favored means for the enhancement of the interfacial performance of Technora fiber/epoxy resin within their composites.

Key wordscomposites    technora fiber    plasma    surface morphology    interface properties
收稿日期: 2018-12-06     
ZTFLH:  TB332  
基金资助:辽宁省自然科学基金(20180550222);辽宁省教育厅科学研究项目(L201751);沈阳航空航天大学引进人才科研启动基金(18YB48)
作者简介: 贾彩霞,女,1984年生,讲师
图1  Technora纤维的化学结构式
Typeρ/g·cm3Rm/MPaEm/GPaδ%
T2401.39340673.34.45
表1  Technora纤维参数
SampleParameterStage 1Stage 2
Technora/EP compositesTemperature80℃120℃
Pressure0.095 MPa0.095 MPa
Time1 h2 h
表2  Technora纤维/环氧复合材料固化参数
图2  Technora纤维的SEM照片
SampleTensile strength/MPaStandard deviationDecrease rate/%
TF-033983110
TF-233862910.35
TF-332992672.91
TF-632043025.71
TF-931162888.29
表3  等离子体处理前后Technora单丝纤维拉伸强度
图3  Technora纤维/环氧树脂复合材料的层间剪切强度
图4  等离子体处理不同时间的Technora纤维复合材料破坏面的SEM照片
图5  Technora纤维/环氧树脂复合材料的水吸水率
[1] Chae H G, Kumar S. Rigid-rod polymeric fibers [J]. Journal of Applied Polymer Science, 2006, 100(1): 791
[2] Hayashida S. High-Performance and Specialty Fibers [M]. Germany, Springer, 2016: 149
[3] Liu Y, Liang G Z. Surface modification and interface properties of enzyme-mediated grafting kevlar fibers [J]. Chinese Journal of Materials Research, 2015, 29(10): 794
[3] (刘 洋, 梁国正. 生物酶催化接枝芳纶纤维和复合材料的界面性能 [J]. 材料研究学报, 2015, 29(10): 794)
[4] Wei J R, Tang A M, Sun Z H. Effects of ultrasound wave pretreatment on structure changes of PPTA fibers [J]. Journal of Materials Engineering, 2009, (4): 61
[4] (魏家瑞, 唐爱民, 孙智华. 超声波预处理对对位芳纶结构的影响 [J]. 材料工程, 2009, (4): 61)
[5] Karim Biswas M A, Shayed M A, Hund R D. Surface modification of twaron aramid fiber by the atmospheric air plasma technique [J]. Textile Research Journal, 2013, 83(4): 406
[6] Wang X, Zheng Y Y, Cao N Net al. Preparation and properties of aramid fibers/nylon 6 composites corroded by maleic anhydride [J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1638
[6] (王 翔, 郑玉婴, 曹宁宁等. 马来酸酐刻蚀芳纶纤维/尼龙6复合材料的制备及性能 [J]. 复合材料学报, 2016, 33(8): 1638)
[7] Zhu D Y, Gu T, Zheng Qet al. Effects of CaCl2 and dopamine treatment on surface structure and properties of aramid fiber [J]. Polymer Materials Science and Engineering, 2017, 33(10): 29
[7] (朱大勇, 辜 婷, 郑 强等. CaCl2和多巴胺处理对芳纶纤维表面结构与性能的影响 [J]. 高分子材料科学与工程, 2017, 33(10): 29)
[8] Bédoui F, Murthy N S, Zimmermann F M. Enhancement of fiber-matrix adhesion by laser ablation-induced surface microcorrugation [J]. Journal of Materials Science, 2008, 43(16): 5585
[9] Lu Z Q, Su Z P, Zhang M Yet al. Mechanical Behavior and Failure Mechanism of Phosphoric Acid Modified Para-Aramid Fiber [J]. Chinese Journal of Materials Research, 2017, 31(8): 597
[9] (陆赵情, 苏治平, 张美云. 磷酸改性对对位芳纶纤维力学性能的影响和破坏机理 [J]. 材料研究学报, 2017, 31(8): 597)
[10] Jia C X, Chen P, Wang Q, et al. The effect of atmospheric-pressure air plasma discharge power on adhesive properties of aramid fibers [J]. Polymer Composites, 2016, 37(2): 620
[11] Tang J, Xiao Q L, Xiong J. Influences of Treatment Conditions on Properties of Technora Fibers [J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2004, 21(1): 1
[11] (唐 菊, 萧庆亮, 熊 杰. Technora纤维的处理条件对其性能影响的探讨 [J]. 浙江理工大学学报(自然科学版), 2004, 21(1): 1)
[12] Jia C X, Chen P, Wang Q. Effects of Twaron fiber surface treatment by air dielectric barrier discharge plasma on the interfacial adhesion in fiber reinforced composites [J]. Surface and Coatings Technology, 2010, (204): 3668
[13] Borcia G, Dumitrascu N, Popa G. Influence of helium-dielectric barrier discharge treatments on the adhesion properties of polyamide-6 surfaces [J]. Surf. Coat. Technol, 2005, (197): 316
[14] Wang Q. Effects of DBD plasma treatment on PBO fiber surface and its composite interface properties [D]. (Dalian, Dalian University of Technology, 2013
[14] (王 乾. 介质阻挡放电等离子体处理对PBO纤维表面及其复合材料界面性能的影响 [D]. 大连, 大连理工大学, 2013)
[15] Prasithphol W, Young R J. Interfacial micromechanics of technora fibre/epoxy composites [J]. Journal of Materials Science, 2005, 40(20): 5381
[16] Hu F Z. Surfaces and Interfaces in Materials [M]. Shanghai, East China University of Science and Technology Press, 2008: 319
[16] (胡福增. 材料表面与界面 [M]. 上海华东理工大学出版社, 2008: 319)
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.