Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (7): 495-501    DOI: 10.11901/1005.3093.2018.423
  研究论文 本期目录 | 过刊浏览 |
加载金属催化剂在碳纤维表面生长多尺度碳纳米管增强体
王延相1, 苏顺生1(), 范汶鑫1,2, 秦建杰1, 瞿策1, 王成国1
1 山东大学 材料科学与工程学院材料液固结构演变与加工教育部重点实验室 济南 250061
2 青岛大学材料科学与工程学院 青岛 266071
Metal Catalyst for Preparation of Multiscale Reinforcement of Carbon Nanotubes on Carbon Fibers
Yanxiang WANG1, Shunsheng SU1(), Wenxin FAN1,2, Jianjie QIN1, Ce QU1, Chengguo WANG1
1 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
2 School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
引用本文:

王延相, 苏顺生, 范汶鑫, 秦建杰, 瞿策, 王成国. 加载金属催化剂在碳纤维表面生长多尺度碳纳米管增强体[J]. 材料研究学报, 2018, 32(7): 495-501.
Yanxiang WANG, Shunsheng SU, Wenxin FAN, Jianjie QIN, Ce QU, Chengguo WANG. Metal Catalyst for Preparation of Multiscale Reinforcement of Carbon Nanotubes on Carbon Fibers[J]. Chinese Journal of Materials Research, 2018, 32(7): 495-501.

全文: PDF(4459 KB)   HTML
摘要: 

用化学气相沉积法在高强度碳纤维表面生长碳纳米管(CNTs)多尺度增强体,研究了加载金属催化剂成分对CNTs生长前后碳纤维强度的影响。结果表明:在500℃金属催化剂成分对还原后催化剂颗粒的形貌和碳纤维的强度影响不大,但是对CNTs的生长速度和碳纤维表面生长CNTs多尺度增强体的强度有显著的影响。高催化效率不仅有利于碳纤维表面CNTs的高效合成,还促进碳纤维表面损伤的修复。Fe-Cu和Ni-Cu催化体系具有较高的催化效率,碳纤维表面催化生长CNTs后其拉伸强度分别提高了12.26%和12.80%。

关键词 无机非金属材料金属催化剂碳纳米管碳纤维拉伸强度多尺度增强体    
Abstract

Carbon nanotubes (CNTs)-grafted carbon fibers, which can significantly improve the tensile strength of carbon fibers, were successfully prepared via chemical vapor deposition (CVD) process. It was found that the metal catalyst composition had a little influence on the morphology of catalyst particles and tensile strength of carbon fibers after the reduction of catalyst precursor, but significantly affected the growth rate of CNTs and the corresponding tensile strength of CNT-grafted carbon fibers. High catalyst activity not only contributes to the high-efficiency for the synthesis of CNTs, but also facilitate the healing of damages on surface and strengthening of carbon fibers. Fe-Cu and Ni-Cu catalysts were found to be high efficient catalyst for CNTs growth. Therewith, the tensile strength of the CNTs grafted carbon fiber prepared in the presence of catalysts of Fe-Cu and Ni-Cu increased by 12.26% and 12.80% respectively.

Key wordsinorganic non-metallic materials    metal catalyst    carbon nanotubes    carbon fibers    tensile strength    CNT-grafted carbon fibers
收稿日期: 2018-01-23     
ZTFLH:  TQ342.31  
基金资助:山东省自然科学基金(ZR2017MEM011,2018GGX104022),国家自然科学基金(51573087)
作者简介:

作者简介 王延相,男,1972年生,教授

图1  碳纤维表面生长CNTs的工艺流程图
图2  碳纤维表面涂覆不同成分催化剂后还原所得各种催化剂颗粒的形貌
图3  催化剂前驱体浓度对碳纤维表面(a)催化加载量与(b)催化剂颗粒粒径及CNTs/CNFs直径的影响
图4  表面加载不同成分催化剂颗粒后碳纤维的强度和拉曼光谱
图5  用不同催化剂催化合成碳纤维表面生长CNTs多尺度增强体的表面形貌
图6  不同催化剂催化合成碳纤维表面生长CNTs多尺度增强体的拉伸强度和在不同温度下金属催化剂颗粒对碳纤维强度的影响
图7  不同催化剂催化合成碳纤维表面生长CNTs多尺度增强体的表面形貌与拉伸强度
[1] Sharma S P, Lakkad S C.Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites[J]. Compos. Part A, 2011, 42: 8
[2] Mathur R B, Chatterjee S, Singh B P.Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties[J]. Compos. Sci. Technol ., 2008, 68(7-8):1608
[3] Sharma S P, Lakkad S C.Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites[J]. Surf. Coat. Technol ., 2010, 205(2): 350
[4] Agnihotri P, Busu S, Kar K K.Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites[J]. Carbon, 2011, 49(9): 3098
[5] Davis D C, Wilkerson J W, Zhu J, et al.Improvements in mechanical properties of a carbon epoxy composites using nanotubes science and technology[J]. Compo. Struct ., 2010, 92(11): 2653
[6] An Q, Rider A N, Thostenson E T.Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties[J]. Carbon, 2012, 50(11): 4130
[7] Zhao F, Huang Y, Liu L.Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites[J]. Carbon, 2011, 49(8): 2624
[8] Fan W X, Wang Y X, Chen J Q, et al.Controllable growth of uniform carbon nanotubes/carbon nanofibers on the surface of carbon fibers[J]. RSC adv ., 2015, 5: 75735
[9] Steiner S A, Li R, Wardle B L.Circumventing the mechanochemical origins of strength loss in the synthesis of hierarchical carbon fibers[J]. ACS Appl. Mater. Interfaces, 2013, 5(11): 4892
[10] An F, Lu C X, Li Y H, et al.Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite[J]. Mater. Des ., 2012, 33: 197
[11] Cartwright R, Esconjauregui S, Hardeman D, et al.Low temperature growth of carbon nanotubes on tetrahedral amorphous carbon using Fe-Cu catalyst[J]. Carbon, 2015, 81: 639
[12] De Greef N, Zhang L M, Magrez A, et al.Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers[J]. Diam. Relat. Mater ., 2015, 51: 39
[13] Liu J, Tian Y L, Chen Y J, et al.Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution[J]. Appl. Surf. Sci ., 2010, 256(21): 6199
[14] Hebert C, Ruffinatto S, Eon D, et al. A composite material made of carbon nanotubes partially embedded in a nanocrystalline diamond film [J].2013, Carbon, 52: 408
[15] Hughes J D H. The carbon fibre/epoxy interface-a review[J]. Compos. Sci. Technol ., 1991, 41(1): 13
[16] Qiu J, Zhang C, Wang B, et al.Carbon nanotube integrated multifunctional multiscale composites[J]. Nanotechnology, 2007, 18(21): 275708
[17] Kim K J, Kim J, Yu W R, et al. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface [J].2013, Carbon, 54: 258
[18] Zhao Y H, Ma Z K, Song H H, et al.Synthesis and characterization of carbon fibers multi-scale reinforcement with grafted graphene oxide[J]. Chin. J. Mater. Res ., 2016, 30(3): 229(赵永华, 马兆昆, 宋怀河等. 碳纤维/氧化石墨烯多尺度增强体的制备与表征[J]. 材料研究学报, 2016, 30(3): 229)
[19] Zhang L M, De Greef N, Kalinka G, et al.Carbon nanotube-grafted carbon fiber polymer composites: Damage characterization on the micro-scale[J]. Compos. Part B-Eng, 2017, 126: 202
[20] Zheng L B, Wang Y X, Qin J J, et al.Scalable Manufacturing of Carbon Nanotubes on Continuous Carbon Fibers Surface from Chemical Vapor Deposition[J]. Vacuum, 2018, 152: 84
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 戚云超, 方国东, 周振功, 梁军. 不同针刺工艺的针刺复合材料面内拉伸强度分析[J]. 材料研究学报, 2023, 37(1): 21-28.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.