Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (7): 502-512    DOI: 10.11901/1005.3093.2017.391
  研究论文 本期目录 | 过刊浏览 |
超疏水复合涂层的制备和性能研究
高硕洪1,2, 刘敏2(), 庞晓军2, 张小锋2, 邓畅光2, 梁兴华2, 邓春明2
1 广东工业大学 材料与能源学院 广州 510006
2 广东省新材料研究所 现代材料表面工程技术国家工程实验室 广东省现代表面工程技术重点实验室 广州 510651
Fabrication and Properties of Super-hydrophobic Composite Coatings
Shuohong GAO1,2, Min LIU2(), Xiaojun PANG2, Xiaofeng ZHANG2, Changguang DENG2, Xinghua LIANG2, Chunming DENG2
1 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
2 Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Key Lab of Gunagdong for Modern Surface Engineering Technology, Guangzhou 510651, China
引用本文:

高硕洪, 刘敏, 庞晓军, 张小锋, 邓畅光, 梁兴华, 邓春明. 超疏水复合涂层的制备和性能研究[J]. 材料研究学报, 2018, 32(7): 502-512.
Shuohong GAO, Min LIU, Xiaojun PANG, Xiaofeng ZHANG, Changguang DENG, Xinghua LIANG, Chunming DENG. Fabrication and Properties of Super-hydrophobic Composite Coatings[J]. Chinese Journal of Materials Research, 2018, 32(7): 502-512.

全文: PDF(8878 KB)   HTML
摘要: 

采用大气等离子喷涂工艺(APS)制备了双层Al2O3/PTFE复合涂层和单层Al2O3-PTFE复合涂层两种涂层结构体系的疏水复合涂层,使用扫描电子显微镜(SEM)、3D表面形貌仪、显微硬度计、接触角测试仪和摩擦磨损试验机分别表征了复合涂层的微观形貌、相组成、粗糙度、硬度、疏水性能以及耐磨性能。评价复合涂层的性能并进而研究了Al2O3陶瓷作为粘结层和硬质颗粒填充相以及工艺参数对复合涂层的疏水性能和耐磨性能的影响。结果表明:无论Al2O3陶瓷作为粘结层还是硬质填充相添加到涂层中,都显著提高了单一PTFE涂层的摩擦学性能。Al2O3-PTFE复合涂层的耐磨性能优于Al2O3/PTFE复合涂层,两复合涂层的磨损率和摩擦系数依次为2.84×10-5 mm3/N·m、9.97×10-5 mm3/N·m和0.51、0.38;复合涂层的表面都具有良好的疏水性能,与水的静态接触角分别为155.4°和148.9°。良好的疏水性能源于表面粗糙的微纳米级突起结构和表面存在密集分布的低表面能氟化物的协同作用。进行摩擦磨损试验后表面的突起结构受到一定的破坏,涂层的疏水性能有所下降,但是Al2O3/PTFE复合涂层仍然具有超疏水性。

关键词 复合材料超疏水复合涂层大气等离子喷涂疏水性能耐磨性能    
Abstract

Composite coatings of double-layered Al2O3/PTFE and single-layered Al2O3-PTFE were prepared via atmospheric plasma spraying (APS) process. The morphology, phase composition, roughness, hardness, hydrophobic property and wear resistance of the composite coatings were characterized by scanning electron microscope (SEM), 3D topography tester, micro-hardness tester, contact angle tester and friction and wear tester respectively. The influence of Al2O3 bond coat, Al2O3 hard particle filling and different process parameters on the hydrophobic property and wear resistance of the composite coatings were assessed. Results show that the wear resistance of the single PTFE coating were improved significantly by inducing Al2O3 ceramic as a bond coat or as hard particle filling phase into the composite coatings; The wear resistance property of Al2O3-PTFE composite coatings was superior to that of the Al2O3/PTFE composite coatings, correspondingly the wear rate of which was 2.84×10-5 mm3/N·m and 9.97×10-5 mm3/N·m respectively, the friction coefficient is 0.51 and 0.38 respectively; While the surface of the two composite coatings showed good hydrophobic properties with static contact angle of 155.4° and 148.9° respectively, which may be attributed to the compacted micro-nano convex structure on the rough surface and the synergistic effect of fluoride with low surface energy distributed on the composite coating surface. After the friction and wear test, the surface structure of the two composite coatings was damaged, hence the hydrophobicity of the coatings degraded, even so, the Al2O3/PTFE composite coating still exhibits super-hydrophobicity.

Key wordscomposites    superhydrophobic composite coatings    atmospheric plasma spraying    hydrophobic property    wear-resistance
收稿日期: 2017-07-03     
ZTFLH:  TG147  
基金资助:国家重点研发计划(2017YFB0306100), 广东省科学院项目(2017GDASCX-0202);广东省科技计划(201313050800031, 201413050502008, 2014B070706026, 2013B061800053);广东省自然基金团队项目(2016A030312015)
作者简介:

作者简介 高硕洪,男,1992年生,硕士

Coating Current
/A
Spray distance
/mm
Carrier gas flow /(L·min-1) Feed rate
/(g·min-1)
Al2O3 PTFE Al2O3 PTFE H2 Ar Al2O3 PTFE
Al2O3/PTFE 630 450 120 60 10 40 30 15
表1  双层Al2O3/PTFE涂层喷涂工艺参数
图1  等离子喷涂送粉示意图
Coating Current
/A
Spray distance
/mm
Carrier gas flow /(L·min-1) Feed rate
/(g·min-1)
Al2O3-PTFE Al2O3-PTFE H2 Ar Al2O3-PTFE
Al2O3-PTFE 600 110 12 40 20
表2  单层Al2O3-PTFE涂层喷涂工艺参数
图2  摩擦磨损试验机的工作示意图
图3  Al2O3/PTFE和Al2O3-PTFE复合涂层的表面形貌
图4  涂层颗粒的表面形貌
图5  Al2O3/PTFE和Al2O3-PTFE复合涂层的截面形貌
Properties
Samples Hardness/HV0.3 Bonding strength/MPa
Coatings Al2O3/PTFE Al2O3-PTFE Al2O3/PTFE Al2O3-PTFE
1 726.94 589.54 21.8 23.9
2 809.23 669.71 24.6 19.6
3 712.78 610.35 29.7 21.5
Average 761.65 623.20 25.4 21.7
表3  涂层的力学性能
图6  Al2O3/PTFE和Al2O3-PTFE复合涂层表面的3D形貌
图7  Al2O3/PTFE复合涂层表面的EDS谱图
图8  Al2O3/PTFE复合涂层表面的EDS谱图
图9  Al2O3-PTFE复合涂层表面位置1的EDS成分分析
图10  微纳米结构利于实现超疏水的模型示意图
图11  Al2O3/PTFE和Al2O3-PTFE复合涂层静态接触角示意图
图12  Al2O3/PTFE和Al2O3-PTFE复合涂层的摩擦系数曲线
图13  Al2O3/PTFE和Al2O3-PTFE复合涂层表面磨痕形貌图
Coatings Friction coefficient Wear track width /mm Wear rate /mm3 /N·m
PTFE 0.15 6.62 45.77×10-5
Al2O3/PTFE 0.38 1.73 9.97×10-5
Al2O3-PTFE 0.51 1.14 2.84×10-5
表4  复合涂层的摩擦磨损结果
图14  摩擦磨损后的Al2O3/PTFE和Al2O3-PTFE复合涂层静态接触角
[1] Guo Y W.Study on Self-cleaning Function of Bionic Non-adhesive Cooker's Shape and Material [D]. Changchun: Jilin university, 2007(郭蕴纹. 不粘锅形态—材料自洁耦合仿生研究 [D]. 长春:吉林大学, 2007)
[2] Yebra D M, Kiil S, Dam-Johansen K.Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Progress in Organic Coatings, 2004, 50(2): 75
[3] Zhang L C.Introduction to Polymer Material [M]. Beijing:Chemistry Industry Press, 1998(张留成. 高分子材料导论 [M]. 北京:化学工业出版社, 1998)
[4] Xie S J.Modifying of poly (tetrafluoroethylene) and its application[J]. New Chemical Materials, 2002, 30(11): 26(谢苏江. 聚四氟乙烯的改性及应用[J]. 化工新型材料, 2002, 30(11): 26)
[5] Kalacska G, Peteghem A V, Parys F V.The tribological behaviour of engineering plastics during sliding friction investigated with small-scale specimens[J]. Wear, 2002, 253(05): 673
[6] Zhai L, Fevzi C, Rubner M F, et al.Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings[J]. Langmuir, 2006, 22(6): 2856
[7] Cortese B, Cingolani R, Manca M, et al.Superhydrophobicity due to the hierarchical scale roughness of PDMS surface[J]. Langmuir, 2008, 4(6): 2712
[8] Takahara A, Tanaka K, NakamuEa T, et al. Super-Liquid-Repellent surfaces prepared bycolloidal silica Nano-particles covered with fluoroalkyl groups[J]. Langmuir, 2005, 21(16): 7299
[9] Akram Raza M, Poelsema B, van Silfhout A, et al. Superhydrophobic surfaces by anomalous fluroalkylsilane self-assembly on silica nanosphere arrays[J]. Langmuir, 2010, 26(15): 12962
[10] Veeramasuneni S, Drelich J, Miller J D, et al.Hydrophobicity of ion-plated PTFE coatings[J]. Progress in Organic Coatings, 1997, 31(3): 265
[11] Jeffrey P Y, Thomas J M.Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and suttering of polyte (trafluoroethylene) using radio frequency plasma[J]. Macromolecules, 1999, 32(20): 6800
[12] Yamauchi G, Miller J D, Saito H, et al.Wetting characteristics of newly developed water-repellent material[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1996, 116(1-2): 125
[13] Di Z Y, He J P, Zhou J H, et al.Fabrication and anticorrosion property of superhydrophobic surfaces with hierarchical structure through an organic-inorganic self-assemble process[J]. Journal of Inorganic Materials, 2010, 25(7): 765(狄志勇, 何建平, 周建华等. 有机-无机自组装制备类荷叶结构超疏水涂层及其性能研究[J]. 无机材料学报, 2010, 25(7): 765)
[14] Gao X F, Jiang L.Biophysics:water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36
[15] Yang K, Fukumoto M, Yassui T, et al.Role of substrate temperature on microstructure formation in plasma-sprayed splats[J]. Surface and Coatings Technology, 2013, 214(214): 138
[16] Zhang J X, He J N, Dong Y C, et al.Microstructure characteristics of Al2O3-13wt%TiO2 coating plasma spray deposited with nanocrystalline powders[J]. Journal of Materials Processing Technology, 2008, 197(1-3): 31
[17] Lima R S, Kucuk A, Berndt C C.Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia[J]. Materials Science and Engineering A, 2002, 327(2): 224
[18] Baxter S.Large contact angles of plant and animal surfaces[J]. Nature, 1945, 155(3923): 21
[19] Li K Q.Fabrication and properties of superhydrophobic surface and organic/inorganic hybrid superhydrophobic coating[D]. Guangzhou:South China University of Technology, 2005(李坤泉. 超疏水表面的构造和有机/无机杂化超疏水涂层的制备与性能研究[D]. 广州: 华南理工大学, 2015)
[20] Zhu D Y, Qiao W, Wang L D.Hydrophobic mechanism and criterion of lotus-leaf-like micro-convex-concave surface[J]. Chinese Sci Bull, 2010, (16): 1595(朱定一, 乔卫, 王连登. 仿荷叶微凹凸表面的疏水机理与判据[J]. 科学通报, 2010, (16): 1595)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 田志刚, 李新梅, 秦忠, 王晓辉, 刘伟斌, 黄永. CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能[J]. 材料研究学报, 2023, 37(3): 219-227.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.