|
|
LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12)正极材料的制备及其电化学性能 |
钟盛文1( ), 张华军1, 姚文俐1,2( ), 张骞1, 付宇坤1, 唐小冬1 |
1 江西理工大学材料科学与工程学院 江西省动力电池及其材料重点实验室 赣州 341000 2 江西省钨与稀土研究院 赣州 341000 |
|
Preparation and Electrochemical Performance of LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12) Cathode Materials |
Shengwen ZHONG1( ), Huajun ZHANG1, Wenli YAO1,2( ), Qian ZHANG1, Yukun FU1, Xiaodong TANG1 |
1 Jiangxi Key Laboratory of Power Battery and Material, School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China 2 Jiangxi Reserach Institue of Tungsten and Rare Earths, Ganzhou 341000, China |
引用本文:
钟盛文, 张华军, 姚文俐, 张骞, 付宇坤, 唐小冬. LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12)正极材料的制备及其电化学性能[J]. 材料研究学报, 2018, 32(7): 487-494.
Shengwen ZHONG,
Huajun ZHANG,
Wenli YAO,
Qian ZHANG,
Yukun FU,
Xiaodong TANG.
Preparation and Electrochemical Performance of LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12) Cathode Materials[J]. Chinese Journal of Materials Research, 2018, 32(7): 487-494.
[1] | Li C D, Yao Z L, Li J, et al.Preparation and electrochemical performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode Material for lithium-ion batteries[J]. Chin. J. Mater. Res ., 2017, 31(5): 394(李成冬, 姚志垒, 李举等. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394) | [2] | Zhong S, Chen P, Yao W.Ni-rich layered oxide Li1.05(Ni0.7Mn0.3)O2 as a highly reversible cathode material for lithium-ion batteries[J]. ECS Electrochem. Lett ., 2015, 4(6): A45 | [3] | Goodenough J B, Kim Y.Challenges for rechargeable batteries[J]. J. Power Sources, 2010, 196(7): 6688 | [4] | Ariyoshi K, Ichikawa T, Ohzuku T.Structural change of LiNi0.5-Mn0.5O2 during charge and discharge in nonaqueous lithium cells[J]. J. Phys. Chem. Solids, 2008, 69: 1238 | [5] | Lu H Q, Wu F, Su Y F, et al.Electrochemical performance of LiNi0.5-Mn0.5O2 as cathode material for lithium-ion batteries prepared by oxalate co-precipitation method[J]. Acta Phys.-Chim. Sin ., 2010, 26(1): 51(卢华权, 吴锋, 苏岳锋等. 草酸共沉淀法制备锂离子电池正极材料LiNi0.5Mn0.5O2及其电化学性能[J]. 物理化学学报, 2010, 26(1): 51) | [6] | Luo C Y, Li Z F, Peng W W, et al.First principles study on electronic structure of LixNi0.5Mn0.5O2 cathode material for lithium ion batteries[J]. Nonferrous Met. Sci. Eng ., 2016, 7(4): 45(罗垂意, 李之锋, 彭弯弯等. 锂离子电池正极材料LixNi0.5Mn0.5O2电子结构的第一性原理研究[J]. 有色金属与工程, 2016, 7(4): 45 | [7] | Yang X, Xia Y.The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery[J]. J. Solid State Electrochem ., 2010, 14(1): 109 | [8] | Johnson C S, Kim J S, Kropf A J, et al.Structural characterization of layered LixNi0.5Mn0.5O2 (0<x≤2) oxide electrodes for Li batteries[J]. Chem. Mater ., 2003, 15(37): 2313 | [9] | Li D, Sasaki Y, Kageyama M, et al.Structure, morphology and electrochemical properties of LiNi0.5Mn0.5-xCoxO2 prepared by solid state reaction[J]. J. Power Sources, 2005, 148(2): 85 | [10] | Ohzuku T, Makimura Y.Layered lithium insertion material of LiNiMnO2: A possible alternative to LiCoO2 for advanced lithium-ion batteries[J]. Chem. Lett ., 2001, 30(8): 744 | [11] | Sakamoto K, Hirayama M, Konishi H.et al.Structural changes in surface and bulk LiNi0.5Mn0.5O2 during electrochemical reaction on epitaxial thin-film electrodes characterized by in situ X-ray scattering[J]. Phys. Chem. Chem. Phys ., 2010, 12: 3815 | [12] | Li J, Wan L, Cao C.A high-rate and long cycling life cathode for rechargeable lithium-ion batteries: hollow LiNi0.5Mn0.5O2 nano/micro hierarchical microspheres[J]. Electrochim. Acta, 2016, 191: 974 | [13] | Kang S H, Kim J, Stoll M E, et al.Layered Li(Ni0.5-xMn0.5-xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries[J]. J. Power Sources, 2002, 112(1): 41 | [14] | Gwon H, Kim S W, Park Y U, et al.Ion-exchange mechanism of layered transition-metal oxides: case study of LiNi0.5Mn0.5O2[J]. Inorg. Chem ., 2014, 53: 8083 | [15] | Dou S, Wang W, Li H, et al.Synthesis and electrochemical performance of LiNi0.475Mn0.475Al0.05O2 as cathode material for lithium-ion battery from Ni-Mn-Al-O precursor[J]. J. Solid State Electrochem ., 2011, 15(4): 747 | [16] | Li D C, Noguchi H, Yoshio M.Electrochemical characteristics of LiNi0.5-xMn0.5-xCo2xO2(0<x≤0.1) prepared by spray dry method[J]. Electrochimica Acta, 2004, 50(2-3): 427 | [17] | Yoon W S, Balasubramanian M, Yang X Q, et al.Soft X-ray absorption spectroscopic study of a LiNi0.5Mn0.5O2 cathode during charge[J]. J. Electrochem. Soc ., 2004, 151(2): A246 | [18] | Dou S, Wang W, Synthesis and electrochemical properties of layered LiNi0.5-xMn0.5-xCo2xO2 for lithium-ion battery from nickel manganese cobalt oxide precursor[J]. J. Solid State Electrochem ., 2011, 15(2): 399 | [19] | Chen P, Mei W J, Zhong S W, et al.Effect of sintering atmosphere on electrochemical performance of cobalt free nickel rich LiNi0.7Mn0.3-O2 as cathode material[J]. Nonferrous Met. Sci. Eng ., 2015, 6(4): 54(陈鹏, 梅文捷, 钟盛文等. 烧结气氛对无钴镍基正极材料LiNi0.7Mn0.3O2性能的影响[J]. 有色金属与工程, 2015, 6(4): 54) | [20] | Ohzuku T, Ueda A, Nagayama M.Electrochemistry and structural chemistry of LiNiO2(R3m) for 4 volt secondary lithium cells[J]. J. Electrochem. Soc ., 1993, 140(7): 1862 | [21] | Sun Y K, Lee B R, Noh H J, et al.A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries[J]. J. Mater. Chem ., 2011, 21(27): 10108 | [22] | Wang Y, Zhang H, Chen W, et al.Gel-combustion synthesis and electrochemical performance of LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion batteries[J]. Rsc Advances, 2011, 4(70): 37148 | [23] | S. Zhong, M. Lai, W. Yao, Z. Li, Synthesis and electrochemical properties of LiNi0.8CoxMn0.2-xO2 positive-electrode material for lithium-ion batteries[J]. Electrochim. Acta, 2016, 212: 343 | [24] | Li L, Zhang X, Chen R, et al.Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries[J]. J. Power Sources, 2014, 249(3): 28 | [25] | Quinlan R A, Lu Y C, Yang S H, et al.XPS Studies of surface chemistry changes of LiNi0.5Mn0.5O2 electrodes during high-voltage cycling[J]. J. Electrochem. Soc ., 2013, 160(4): A669 | [26] | Yu C, Li G, Guan X, et al.Composites Li2MnO3·LiMn1/3Ni1/3Co1/3O2 optimized synthesis and applications as advanced high-voltage cathode for batteries working at elevated temperatures[J]. Electrochim. Acta, 2012, 81: 283 | [27] | Matsuda Y, Suzuki K, Hirayama M, et al.High-pressure synthesis of lithium-rich layered rock-salt Li2(Mn3/8Co1/4Ni3/8)O3-x for lithium battery cathodes[J]. Solid State Ionics, 2014, 262: 88 | [28] | Huang C K, Sakamoto J S, Wolfenstine J, et al.The limits of low-temperature performance of Li-ion cells[J]. J. Electrochem. Soc ., 2000, 147(8): 2893 | [29] | Smart M C, Ratnakumar B V, Surampudi S.Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance[J]. J. Electrochem. Soc ., 2002, 149: A361 | [30] | Zhang S S, Xu K, Jow T R.The low temperature performance of Li-ion batteries, J. Power Sources[J]. 2003, 115(1): 137 | [31] | Lu Z, Beaulieu L Y, Donaberger R A, et al.Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. J. Electrochem. Soc ., 2002, 149(6): A778 | [32] | Martha S K, Nanda J, Veith G M, et al.Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175 Co0.1O2[J]. J. Power Sources, 2012, 216(11): 179 | [33] | Chen Y, Chen Z, Xie K.Effect of annealing on the first-cycle performance and reversible capabilities of lithium-rich layered oxide cathodes[J]. J. Phys. Chem. C, 2014, 118(22): 11505 | [34] | Liu J, Reeja-Jayan B, Manthiram A.Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13-Co0.13]O2 cathodes[J]. J. Phys. Chem. C, 2010, 114(20): 9528 | [35] | Liu J, Jiang R, Wang X, et al.The defect chemistry of LiFePO4, prepared by hydrothermal method at different ph values[J]. J. Power Sources, 2009, 194(1): 536 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|