Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (7): 487-494    DOI: 10.11901/1005.3093.2018.357
  研究论文 本期目录 | 过刊浏览 |
LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12)正极材料的制备及其电化学性能
钟盛文1(), 张华军1, 姚文俐1,2(), 张骞1, 付宇坤1, 唐小冬1
1 江西理工大学材料科学与工程学院 江西省动力电池及其材料重点实验室 赣州 341000
2 江西省钨与稀土研究院 赣州 341000
Preparation and Electrochemical Performance of LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12) Cathode Materials
Shengwen ZHONG1(), Huajun ZHANG1, Wenli YAO1,2(), Qian ZHANG1, Yukun FU1, Xiaodong TANG1
1 Jiangxi Key Laboratory of Power Battery and Material, School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 Jiangxi Reserach Institue of Tungsten and Rare Earths, Ganzhou 341000, China
引用本文:

钟盛文, 张华军, 姚文俐, 张骞, 付宇坤, 唐小冬. LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12)正极材料的制备及其电化学性能[J]. 材料研究学报, 2018, 32(7): 487-494.
Shengwen ZHONG, Huajun ZHANG, Wenli YAO, Qian ZHANG, Yukun FU, Xiaodong TANG. Preparation and Electrochemical Performance of LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12) Cathode Materials[J]. Chinese Journal of Materials Research, 2018, 32(7): 487-494.

全文: PDF(5599 KB)   HTML
摘要: 

将简单共沉淀与高温固相法相结合制备了LiNi0.5Mn0.5-xCoxO2(0<x≤0.12)正极材料,使用XRD、SEM、EDS和XPS等手段表征其物相结构、形貌、各元素的含量和价态,根据恒电流充放电和电化学交流阻抗谱表征其电化学性能。结果表明,LiNi0.5Mn0.5-xCoxO2正极材料具有α-NaFeO2型层状结构;成功地将Co引入到材料的晶格内部分替代了Mn;Ni和Mn的价态分别为+2和+4,Co的价态为+3,引入Co使材料出现氧缺失。引入Co可明显改善材料的倍率性能、循环稳定性和低温性能。在2.75~4.35 V和0.2C条件下x=0.12的电极材料其首次放电比容量为180.8 mAh·g-1,100次循环后容量保持率为92.3%,-20℃的放电比容量为25℃放电比容量的66.3%。

关键词 无机非金属材料LiNi0.5Mn0.5-xCoxO2正极材料共沉淀法电化学阻抗低温性能锂离子电池    
Abstract

Cathode materials of LiNi0.5Mn0.5-xCoxO2(0<x≤0.12) were synthesized via simple co-precipitation and high-temperature solid-state reaction processes. The prepared materials were characterized by SEM, XRD, EDS and XPS. Their electrochemical performance was examined by galvanostatic charge-discharge tests, electrochemical impedance spectroscopy. Results show that all of the doped samples have a typical α-NaFeO2 layered structure with partial substitution of Co-atom for Mn-atom in the crystal lattice. XPS analysis showed that there is oxygen deficiency in the doped materials and the valence states of Ni, Mn and Co were mainly +2, +4 and +3, respectively. It has been found that the Co-doped LiNi0.5Mn0.5O2 shows better cycling stability, rate capacity and low-temperature property than LiNi0.5Mn0.5O2 without Co doping. For cycled at 25oC in the voltage range of 2.75~4.35 V, the LiNi0.5Mn0.5-xCo0.12O2 delivered initial discharge specific capacity of 180.8 mAh·g-1 and kept capacity retention rate of 92.3% after 100 cycles. The discharge specific capacity for the corresponding electrode cycled at -20oC is about 66.3% of its initial discharge specific capacity cycled at 25oC.

Key wordsinorganic non-metallic materials    LiNi0.5Mn0.5-xCoxO2 cathode material    co-precipitation method    electrochemical impedance spectroscopy    low-temperature property    lithium-ion batteries
收稿日期: 2017-11-04     
ZTFLH:  TB221  
基金资助:国家自然科学基金(51372104),江西省教育厅(GJJ160601),江西理工大学博士启动基金(jxxjbs16025),赣市财教字[2017]197号,江西省对外科技合作(20123BDH80016)
作者简介:

作者简介 钟盛文,男,1963年生,教授

图1  LiNi0.5Mn0.5-xCoxO2的XRD图谱
Co a/nm c/nm V×10-3/nm3 c/a I003/I104
x=0 0.28878 1.42859 103.17 4.9471 1.52
x=0.04 0.28853 1.42789 102.95 4.9488 1.65
x=0.08 0.28794 1.42665 102.44 4.9547 1.59
x=0.12 0.28746 1.42520 101.99 4.9579 1.43
表1  LiNi0.5Mn0.5-xCoxO2的晶胞参数
图2  LiNi0.5Mn0.5-xCoxO2的SEM照片
图3  引入量0.12样品的EDS图
Element Mass fraction / % Atom fraction / %
Ni K 36.65 20.15
Mn K 24.84 14.60
Co K 8.48 4.65
表2  引入量0.12样品的元素含量
图4  引入Co样品的XPS图谱
图5  LiNi0.5Mn0.5-xCoxO2的循环曲线
图6  LiNi0.5Mn0.5-xCoxO2在不同倍率下的循环曲线
图7  LiNi0.5Mn0.5-xCoxO2在-20℃,0.2C倍率下的放电曲线
图8  LiNi0.5Mn0.5-xCoxO2的循环伏安曲线
图9  LiNi0.5Mn0.5-xCoxO2的EIS图谱
[1] Li C D, Yao Z L, Li J, et al.Preparation and electrochemical performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode Material for lithium-ion batteries[J]. Chin. J. Mater. Res ., 2017, 31(5): 394(李成冬, 姚志垒, 李举等. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394)
[2] Zhong S, Chen P, Yao W.Ni-rich layered oxide Li1.05(Ni0.7Mn0.3)O2 as a highly reversible cathode material for lithium-ion batteries[J]. ECS Electrochem. Lett ., 2015, 4(6): A45
[3] Goodenough J B, Kim Y.Challenges for rechargeable batteries[J]. J. Power Sources, 2010, 196(7): 6688
[4] Ariyoshi K, Ichikawa T, Ohzuku T.Structural change of LiNi0.5-Mn0.5O2 during charge and discharge in nonaqueous lithium cells[J]. J. Phys. Chem. Solids, 2008, 69: 1238
[5] Lu H Q, Wu F, Su Y F, et al.Electrochemical performance of LiNi0.5-Mn0.5O2 as cathode material for lithium-ion batteries prepared by oxalate co-precipitation method[J]. Acta Phys.-Chim. Sin ., 2010, 26(1): 51(卢华权, 吴锋, 苏岳锋等. 草酸共沉淀法制备锂离子电池正极材料LiNi0.5Mn0.5O2及其电化学性能[J]. 物理化学学报, 2010, 26(1): 51)
[6] Luo C Y, Li Z F, Peng W W, et al.First principles study on electronic structure of LixNi0.5Mn0.5O2 cathode material for lithium ion batteries[J]. Nonferrous Met. Sci. Eng ., 2016, 7(4): 45(罗垂意, 李之锋, 彭弯弯等. 锂离子电池正极材料LixNi0.5Mn0.5O2电子结构的第一性原理研究[J]. 有色金属与工程, 2016, 7(4): 45
[7] Yang X, Xia Y.The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery[J]. J. Solid State Electrochem ., 2010, 14(1): 109
[8] Johnson C S, Kim J S, Kropf A J, et al.Structural characterization of layered LixNi0.5Mn0.5O2 (0<x≤2) oxide electrodes for Li batteries[J]. Chem. Mater ., 2003, 15(37): 2313
[9] Li D, Sasaki Y, Kageyama M, et al.Structure, morphology and electrochemical properties of LiNi0.5Mn0.5-xCoxO2 prepared by solid state reaction[J]. J. Power Sources, 2005, 148(2): 85
[10] Ohzuku T, Makimura Y.Layered lithium insertion material of LiNiMnO2: A possible alternative to LiCoO2 for advanced lithium-ion batteries[J]. Chem. Lett ., 2001, 30(8): 744
[11] Sakamoto K, Hirayama M, Konishi H.et al.Structural changes in surface and bulk LiNi0.5Mn0.5O2 during electrochemical reaction on epitaxial thin-film electrodes characterized by in situ X-ray scattering[J]. Phys. Chem. Chem. Phys ., 2010, 12: 3815
[12] Li J, Wan L, Cao C.A high-rate and long cycling life cathode for rechargeable lithium-ion batteries: hollow LiNi0.5Mn0.5O2 nano/micro hierarchical microspheres[J]. Electrochim. Acta, 2016, 191: 974
[13] Kang S H, Kim J, Stoll M E, et al.Layered Li(Ni0.5-xMn0.5-xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries[J]. J. Power Sources, 2002, 112(1): 41
[14] Gwon H, Kim S W, Park Y U, et al.Ion-exchange mechanism of layered transition-metal oxides: case study of LiNi0.5Mn0.5O2[J]. Inorg. Chem ., 2014, 53: 8083
[15] Dou S, Wang W, Li H, et al.Synthesis and electrochemical performance of LiNi0.475Mn0.475Al0.05O2 as cathode material for lithium-ion battery from Ni-Mn-Al-O precursor[J]. J. Solid State Electrochem ., 2011, 15(4): 747
[16] Li D C, Noguchi H, Yoshio M.Electrochemical characteristics of LiNi0.5-xMn0.5-xCo2xO2(0<x≤0.1) prepared by spray dry method[J]. Electrochimica Acta, 2004, 50(2-3): 427
[17] Yoon W S, Balasubramanian M, Yang X Q, et al.Soft X-ray absorption spectroscopic study of a LiNi0.5Mn0.5O2 cathode during charge[J]. J. Electrochem. Soc ., 2004, 151(2): A246
[18] Dou S, Wang W, Synthesis and electrochemical properties of layered LiNi0.5-xMn0.5-xCo2xO2 for lithium-ion battery from nickel manganese cobalt oxide precursor[J]. J. Solid State Electrochem ., 2011, 15(2): 399
[19] Chen P, Mei W J, Zhong S W, et al.Effect of sintering atmosphere on electrochemical performance of cobalt free nickel rich LiNi0.7Mn0.3-O2 as cathode material[J]. Nonferrous Met. Sci. Eng ., 2015, 6(4): 54(陈鹏, 梅文捷, 钟盛文等. 烧结气氛对无钴镍基正极材料LiNi0.7Mn0.3O2性能的影响[J]. 有色金属与工程, 2015, 6(4): 54)
[20] Ohzuku T, Ueda A, Nagayama M.Electrochemistry and structural chemistry of LiNiO2(R3m) for 4 volt secondary lithium cells[J]. J. Electrochem. Soc ., 1993, 140(7): 1862
[21] Sun Y K, Lee B R, Noh H J, et al.A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries[J]. J. Mater. Chem ., 2011, 21(27): 10108
[22] Wang Y, Zhang H, Chen W, et al.Gel-combustion synthesis and electrochemical performance of LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion batteries[J]. Rsc Advances, 2011, 4(70): 37148
[23] S. Zhong, M. Lai, W. Yao, Z. Li, Synthesis and electrochemical properties of LiNi0.8CoxMn0.2-xO2 positive-electrode material for lithium-ion batteries[J]. Electrochim. Acta, 2016, 212: 343
[24] Li L, Zhang X, Chen R, et al.Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries[J]. J. Power Sources, 2014, 249(3): 28
[25] Quinlan R A, Lu Y C, Yang S H, et al.XPS Studies of surface chemistry changes of LiNi0.5Mn0.5O2 electrodes during high-voltage cycling[J]. J. Electrochem. Soc ., 2013, 160(4): A669
[26] Yu C, Li G, Guan X, et al.Composites Li2MnO3·LiMn1/3Ni1/3Co1/3O2 optimized synthesis and applications as advanced high-voltage cathode for batteries working at elevated temperatures[J]. Electrochim. Acta, 2012, 81: 283
[27] Matsuda Y, Suzuki K, Hirayama M, et al.High-pressure synthesis of lithium-rich layered rock-salt Li2(Mn3/8Co1/4Ni3/8)O3-x for lithium battery cathodes[J]. Solid State Ionics, 2014, 262: 88
[28] Huang C K, Sakamoto J S, Wolfenstine J, et al.The limits of low-temperature performance of Li-ion cells[J]. J. Electrochem. Soc ., 2000, 147(8): 2893
[29] Smart M C, Ratnakumar B V, Surampudi S.Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance[J]. J. Electrochem. Soc ., 2002, 149: A361
[30] Zhang S S, Xu K, Jow T R.The low temperature performance of Li-ion batteries, J. Power Sources[J]. 2003, 115(1): 137
[31] Lu Z, Beaulieu L Y, Donaberger R A, et al.Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. J. Electrochem. Soc ., 2002, 149(6): A778
[32] Martha S K, Nanda J, Veith G M, et al.Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175 Co0.1O2[J]. J. Power Sources, 2012, 216(11): 179
[33] Chen Y, Chen Z, Xie K.Effect of annealing on the first-cycle performance and reversible capabilities of lithium-rich layered oxide cathodes[J]. J. Phys. Chem. C, 2014, 118(22): 11505
[34] Liu J, Reeja-Jayan B, Manthiram A.Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13-Co0.13]O2 cathodes[J]. J. Phys. Chem. C, 2010, 114(20): 9528
[35] Liu J, Jiang R, Wang X, et al.The defect chemistry of LiFePO4, prepared by hydrothermal method at different ph values[J]. J. Power Sources, 2009, 194(1): 536
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.