Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (2): 145-154    DOI: 10.11901/1005.3093.2018.387
  本期目录 | 过刊浏览 |
直接Z-型立方/六方ZnIn2S4复合光催化剂的制备及其光催化性能
陈顺生1,2,李少珍1,罗晓婧3,王国宏4()
1. 湖北理工学院数理学院 黄石 435003
2. 湖北大学物理与电子科学学院 铁电压电材料与器件湖北省重点实验室 武汉 430062
3. 上海电力学院数理学院 上海 201300
4. 湖北师范大学 湖北省稀有金属化学协同创新中心 黄石 435002
Preparation and Photocatalytic Properties of Direct Z-Scheme Hexagonal/Cubic ZnIn2S4 Composite Catalysts
Shunsheng CHEN1,2,Shaozhen LI1,Xiaojing LUO3,Guohong WANG4()
1. School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China
2. Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic Science, Hubei University, Wuhan 430062, China
3. College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201300, China
4. Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Normal University, Huangshi 435002, China
引用本文:

陈顺生,李少珍,罗晓婧,王国宏. 直接Z-型立方/六方ZnIn2S4复合光催化剂的制备及其光催化性能[J]. 材料研究学报, 2019, 33(2): 145-154.
Shunsheng CHEN, Shaozhen LI, Xiaojing LUO, Guohong WANG. Preparation and Photocatalytic Properties of Direct Z-Scheme Hexagonal/Cubic ZnIn2S4 Composite Catalysts[J]. Chinese Journal of Materials Research, 2019, 33(2): 145-154.

全文: PDF(11874 KB)   HTML
摘要: 

通过水热反应方法制备出立方相ZnIn2S4和六方相ZnIn2S4和系列不同摩尔比的复合相ZnIn2S4光催化剂,使用X射线衍射、扫描电子显微镜、电子能谱、透射电子显微镜、光致发光光谱、N2吸附-脱附法及紫外-可见光漫反射等手段表征了样品的晶体结构、显微结构及吸光特性并在可见光照射下进行了甲基橙降解实验。结果表明,复合相ZnIn2S4样品都具有比立方相、六方相和机械混合的ZnIn2S4更好的可见光催化活性,当复合相ZnIn2S4样品中立方相与六方相摩尔比为3:7时体系的催化活性最高。这种样品被可见光照射30 min后,甲基橙的降解率达到95.2%。其降解机理与样品较大的比表面积以及样品中的立方相与六方相之间的密切接触而形成直接Z-型光催化过程有关。

关键词 无机非金属材料可见光催化降解水热法直接Z-型复合光催化剂复合相ZnIn2S4    
Abstract

Photocatalysts of cubic ZnIn2S4 and hexagonal ZnIn2S4 as well as a series of Cubic ZnIn2S4/hexagonal ZnIn2S4 composite with different molar ratios were synthesized via hydrothermal method. The crystal structure, microstructure and optical absorption property of the as-synthesized photocatalysts were characterized by means of X-ray diffractometer, scanning electron microscopy, transmission electron microscopy, photoluminescence spectrometer, Brunauer-Emmett-TeIler analysis and UV-visible diffuse reflectance spectroscopy. The photocatalytic activities of the prepared photocatalysts were evaluated through photocatalytic degradation of methyl orange under visible-light irradiation. Results show that all the composite photocatalysts have much better photocatalytic activity than that of the catalysts of cubic ZnIn2S4 and hexagonal ZnIn2S4 as well as the mechanically mixed ZnIn2S4 of the above two pure catalysts; Among others, the composite with more ratio 3:7 for cubic ZnIn2S4 to hexagonal ZnIn2S4 presents the highest photocatalytic activity with degradation efficiency for methyl orange up to 95.2% under visible-light irradiation for 30 minutes. This property can be attributed to the much larger specific surface areas and a direct Z-scheme photocatalytic process due to the close contact of cubic ZnIn2S4 and hexagonal ZnIn2S4 produced by the hydrothermal synthesis process.

Key wordsinorganic non-metallic materials    visible-light photocatalytic degradation    hydrothermal method    direct Z-scheme composite photocatalyst    ZnIn2S4 composite catalysts
收稿日期: 2018-06-12     
ZTFLH:  O643.36  
基金资助:国家自然科学基金(11504227);国家自然科学基金(51302074);国家自然科学基金(11374147)
作者简介: 陈顺生,男,1975年生,博士
No.NameMass/gMol ratio
In(NO3)3·4.5H2OZn(NO3)2·6H2OZnCl2CH3CSNH2Cubic: hexagonal
1C0.7640.2980.61:0
27C-3H0.7640.2090.0410.67:3
35C-5H0.7640.150.0680.65:5
43C-7H0.7640.0890.0950.63:7
5H0.7640.1360.60:1
表1  样品C,7C-3H,5C-5H,3C-7H和H的原料配比
图1  合成的ZnIn2S4样品的XRD图谱
图2  六方相ZnIn2S4和立方相ZnIn2S4的EDS图谱
图3  ZnIn2S4样品的漫反射图谱和根据αhυ–hυ关系拟合的带隙曲线
图4  样品C,7C-3H,5C-5H,3C-7H,H及3C-7H-H降解MO的吸收光谱
图5  样品的可见光光催化降解活性曲线
图6  样品C,H及3C-7H的SEM图片
图7  样品3C-7H的TEM照片及HRTEM images照片
图8  样品C,5C-5H和3C-7H的N2吸脱附等温曲线, 内插图是样品的孔径分布曲线
Sample

Specific surface area

/m2·g-1

Pore

volume

/cm3·g-1

Average pore size

/nm

Bandgap

/eV

C96.70.1797.412.27
5C-5H101.50.2017.912.33
3C-7H145.80.39310.772.34
表2  样品C,5C-5H和3C-7H的BET测量数据.
图9  样品C,样品H及样品3C-7H的PL谱,激发波长400 nm
图10  样品3C-7H的循环测试曲线
图11  样品3C-7H的活性物种捕捉实验结果
图12  样品3C-7H光催化机理示意图
[1] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bull. Environ. Contaminat. Toxicol., 1976, 16: 697
[2] Zhang C, Wu Z J, Liu J J, et al. Preparation of MoS2/TiO2 composite catalyst and its photocatalytic hydrogen production activity under UV irradiation [J]. Acta Phys. Chim. Sin., 2017, 33: 1492
[2] (张 驰, 吴志娇, 刘建军等. MoS2/TiO2复合催化剂的制备及其在紫外光下的光催化制氢活性 [J]. 物理化学学报, 2017, 33: 1492
[3] Zhang J F, Zhou P, Liu J J, et al. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2 [J]. Phys. Chem. Chem. Phys., 2014, 16: 20382
[4] Zhang J, Wu W C, Yan S, et al. Enhanced photocatalytic activity for the degradation of rhodamine B by TiO2 modified with Gd2O3 calcined at high temperature [J]. Appl. Surf. Sci., 2015, 344: 249
[5] Meng A Y, Zhang J, Xu D F, et al. Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets [J]. Appl. Catal., 2016, 198B: 286
[6] Papailias I, Todorova N, Giannakopoulou T, et al. Photocatalytic activity of modified g-C3N4/TiO2 nanocomposites for NOx removal [J]. Catal. Today, 2017, 280: 37
[7] Ren H T, Yang Q. Fabrication of Ag2O/TiO2 with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method [J]. Appl. Surf. Sci., 2017, 396: 530
[8] Ma L N, Wang G H, Jiang C J, et al. Synthesis of core-shell TiO2@g-C3N4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light [J]. Appl. Surf. Sci., 2018, 430: 263
[9] Chen S S, Li S Z, Xiong L B, et al. In-situ growth of ZnIn2S4 decorated on electrospun TiO2 nanofibers with enhanced visible-light photocatalytic activity [J]. Chem. Phys. Lett., 2018, 706: 68
[10] Low J X, Cheng B, Yu J G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review [J]. Appl. Surf. Sci., 2017, 392: 658
[11] Ouyang W X, Teng F, Fang X S. High performance BiOCl nano-sheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl Nanosheets [J]. Adv. Funct. Mater., 2018, 28: 1707178
[12] Zhong J B, Li J Z, Zeng J, et al. Enhanced photocatalytic activity of In2O3-decorated TiO2 [J]. Appl. Phys., 2014, 115A: 1231
[13] Zalfani M, Hu Z Y, Yu W B, et al. BiVO4/3DOM TiO2 nanocomposites: effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants [J]. Appl. Catal., 2017, 205: 121
[14] Li L L, Cheng B, Wang Y X, et al. Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2 composite nanofibers [J]. J. Colloid Interf. Sci., 2015, 449: 115
[15] Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles [J]. J. Am. Chem. Soc., 2012, 134: 6575
[16] Gao H Z, Wang H E, Jin Y L, et al. Controllable fabrication of immobilized ternary CdS/Pt-TiO2 heteronanostructures toward high-performance visible-light driven photocatalysis [J]. Phys. Chem. Chem. Phys., 2015, 17: 17755
[17] Ai G J, Mo R, Chen Q, et al. TiO2/Bi2S3 core-shell nanowire arrays for photoelectrochemical hydrogen generation [J]. RSC Adv., 2015, 5: 13544
[18] Zhang Z Y, Liu K C, Feng Z Q, et al. Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer [J]. Sci. Rep., 2016, 6: 19221
[19] Zhang D Y, Zhang Y H, Luo Y S, et al. High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel [J]. Nano Res., 2018, 11: 1651
[20] Wang P, Wang J, Wang X F, et al. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity [J]. Appl. Catal., 2013, 132-133B: 452
[21] Romeo N, Dallaturca A, Braglia R, et al. Charge storage in ZnIn2S4 single crystals [J]. Appl. Phys. Lett., 1973, 2: 21
[22] Mahadik M A, Shinde P S, Cho M, et al. Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance [J]. Appl. Catal., 2016, 184B: 337
[23] Liu H, Jin Z T, Xu Z Z, et al. Fabrication of ZnIn2S4-g-C3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants [J]. RSC Adv., 2015, 5: 97951
[24] Parmeggiani C, Cardona F. Transition metal based catalysts in the aerobic oxidation of alcohols [J]. Green Chem., 2012, 14: 547
[25] Yuan Y J, Tu J R, Ye Z J, et al. MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation [J]. Appl. Catal., 2016, 188: 13
[26] Qiu P X, Yao J H, Chen H, et al. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst [J]. J. Hazard. Mater., 2016, 317: 158
[27] Chen Z X, Xu J J, Ren Z Y, et al. Low temperature synthesis of ZnIn2S4 microspheres as a visible light photocatalyst for selective oxidation [J]. Catal. Commun., 2013, 41: 83
[28] Chai B, Peng T Y, Zeng P, et al. Preparation of a MWCNTs/ZnIn2S4 composite and its enhanced photocatalytic hydrogen production under visible-light irradiation [J]. Dalton Trans., 2012, 41: 1179
[29] Shang L, Zhou C, Bian T, et al. Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production [J]. J. Mater. Chem., 2013, 1A: 4552
[30] Chai B, Peng T Y, Zeng P, et al. Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation [J]. J. Phys. Chem., 2011, 115C: 6149
[31] Shen J, Zai J T, Yuan Y P, et al. 3D hierarchical ZnIn2S4: the preparation and photocatalytic properties on water splitting [J]. Int. J. Hydrogen Energy, 2012, 37: 16986
[32] Gou X L, Cheng F Y, Shi Y H, et al. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn (S, Se)2 nano-/microstructures via facile solution route [J]. J. Am. Chem. Soc., 2006, 128: 7222
[33] Li Y X, Wang J X, Peng S Q, et al. Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation [J]. Int. J. Hydrogen Energy, 2010, 35: 7116
[34] Shen S H, Zhao L, Guo L J. ZnmIn2S3+m (m=1-5, integer): a new series of visible-light-driven photocatalysts for splitting water to hydrogen [J]. Int. J. Hydrogen Energy, 2010, 35: 10148
[35] Song K L, Zhu R S, Tian F, et al. Effects of indium contents on photocatalytic performance of ZnIn2S4 for hydrogen evolution under visible light [J]. J. Solid State Chem., 2015, 232: 138
[36] Su L, Ye X J, Meng S G, et al. Effect of different solvent on the photocatalytic activity of ZnIn2S4 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light irradiation [J]. Appl. Surf. Sci., 2016, 384: 161
[37] Chen Y J, Hu S W, Liu W J, et al. Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance [J]. Dalton Trans., 2011, 40: 2607
[38] Peng S Q, Dan M, Guo F J, et al. Template synthesis of ZnIn2S4 for enhanced photocatalytic H2 evolution using triethanolamine as electron donor [J]. Colloids Surf., 2016, 504: 18
[39] Jo W K, Natarajan T S. Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn2S4)-graphitic carbon nitride (g-C3N4)/bismuth vanadate (BiVO4) nanorod-based ternary nanocomposites with enhanced charge separation via Z-scheme transfer [J]. J. Colloid Interface Sci., 2016, 482: 58
[40] Adhikari S, Charanpahari A V, Madras G. Solar-light-driven improved photocatalytic performance of hierarchical ZnIn2S4 architectures [J]. ACS Omega, 2017, 2: 6926
[41] Yang W, Chen D Z, Quan H Y, et al. Enhanced photocatalytic properties of ZnFe2O4 doped ZnIn2S4 Heterostructure under visible light irradiation [J]. RSC Adv., 2016, 6: 83012
[42] Chen Y J, He J, Li J J, et al. Hydrilla derived ZnIn2S4 photocatalyst with hexagonal-cubic phase junctions: A bio-inspired approach for H2 evolution [J]. Catal. Commun., 2016, 87: 1
[43] Xu F Y, Xiao W, Cheng B, et al. Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity [J]. Intern. J. Hydrogen Energy, 2014, 39: 15394
[44] Li K, Han M, Chen R, et al. Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability [J]. Adv. Mater., 2016, 28: 8906
[45] Wang X, Xu Q, Li M R, et al. Photocatalytic overall water splitting promoted by an αβ phase junction on Ga2O3 [J]. Angew. Chem., Int. Ed. Engl., 2012, 51: 13089
[46] Wang J G, Chen Y J, Zhou W, et al. Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution [J]. J. Mater. Chem., 2017, 5A: 8451
[47] Tian F, Zhu R S, Song K L, et al. The effects of amount of La on the photocatalytic performance of ZnIn2S4 for hydrogen generation under visible light [J]. Int. J. Hydrogen Energy, 2015, 40: 2141
[48] Hou J G, Yang C, Cheng H J, et al. Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production [J]. Phys. Chem. Chem. Phys., 2013, 15: 15660
[49] Fan B, Chen Z H, Liu Q, et al. One-pot hydrothermal synthesis of Ni-doped ZnIn2S4 nanostructured film photoelectrodes with enhanced photoelectrochemical performance [J]. Appl. Surf. Sci., 2016, 370: 252
[50] Chen Z X, Li D Z, Zhang W J, et al. Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation [J]. J. Phys. Chem., 2009, 113C: 4433
[51] Shi W L, Lv H C, Yuan S L, et al. Synergetic effect of carbon dots as co-catalyst for enhanced photocatalytic performance of methyl orange on ZnIn2S4 microspheres [J]. Sep. Purif. Technol., 2017, 174: 282
[52] Liu T T, Wang L, Lu X, et al. Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways [J]. RSC Adv., 2017, 7: 12292
[53] Cui L F, Ding X, Wang Y G, et al. Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light [J]. Appl. Surf. Sci., 2017, 391: 202
[54] Lu D, Zhang G K, Wen Z. Visible-light-driven g-C3N4/Ti3+-TiO2 photocatalyst Co-exposed {001} and {101} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr (VI) reduction [J]. Appl. Surf. Sci., 2015, 358: 223
[55] Liu Q Q, Fan C Y, Tang H, et al. One-pot synthesis of g-C3N4/V2O5 composites for visible light-driven photocatalytic activity [J]. Appl. Surf. Sci., 2015, 358: 188
[56] Chen Y J, Huang R K, Chen D Q, et al. Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4 microspheres and cubic ZnIn2S4 nanoparticles [J]. ACS Appl. Mater. Interfaces, 2012, 4: 2273
[57] Li P, Li H J, Tu W G, et al. Photocatalytic application of Z-type system [J]. Acta Phys. Sin., 2015, 64: 094209
[57] (李 平, 李海金, 涂文广等. Z型光催化材料的研究进展 [J]. 物理学报, 2015, 64: 094209
[58] Zhou P, Yu J G, Jaroniec M. All-solid-state Z-scheme photocatalytic systems [J]. Adv. Mater., 2014, 26: 4920
[59] Zhang L P, Wang G H, Xiong Z Z, et al. Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for rhodamine B degradation [J]. Appl. Surf. Sci., 2018, 436: 162
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.