Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (2): 138-144    DOI: 10.11901/1005.3093.2018.343
  本期目录 | 过刊浏览 |
结构调制超硬Ti/TiN纳米多层膜的制备及其尺寸效应
杨波波,孙珲(),杨田林(),郑小龙,徐涛,李方正,宋淑梅
山东大学(威海)空间科学与物理学院 威海 264209
Preparation of Structure-Modulated Superhard Ti/TiN Nano-Multilayers and Size Effect
Bobo YANG,Hui SUN(),Tianlin YANG(),Xiaolong ZHENG,Tao XU,Fangzheng LI,Shumei SONG
School of Space Science and Physics, Shandong University Weihai, Weihai 264209, China
引用本文:

杨波波,孙珲,杨田林,郑小龙,徐涛,李方正,宋淑梅. 结构调制超硬Ti/TiN纳米多层膜的制备及其尺寸效应[J]. 材料研究学报, 2019, 33(2): 138-144.
Bobo YANG, Hui SUN, Tianlin YANG, Xiaolong ZHENG, Tao XU, Fangzheng LI, Shumei SONG. Preparation of Structure-Modulated Superhard Ti/TiN Nano-Multilayers and Size Effect[J]. Chinese Journal of Materials Research, 2019, 33(2): 138-144.

全文: PDF(7869 KB)   HTML
摘要: 

使用多弧离子镀技术在高速钢基体上制备了调制周期为5~40 nm的Ti/TiN纳米多层膜,用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、纳米压痕仪和划痕仪等手段表征薄膜的微观结构和性能,研究了调制周期对Ti/TiN纳米多层膜性能的影响,并讨论了在小调制周期条件下Ti/TiN纳米多层膜的超硬效应和多弧离子镀技术对纳米多层膜硬度的强化作用。结果表明,与单层TiN相比,本文制备的Ti/TiN纳米多层膜分层情况良好,薄膜均匀致密,没有明显的柱状晶结构,TiN以面心立方结构沿(111)方向择优生长。随着调制周期的减小薄膜的硬度呈现先增大后减小的趋势,并在调制周期为7.5 nm时具有最大的硬度42.9 GPa和H/E值。这表明,Ti/TiN在具有最大硬度的同时仍然具有良好的耐磨性和韧性。Ti/TiN纳米多层膜的附着力均比单层TiN薄膜的附着力高,调制周期为7.5 nm时多层膜的附着力为(58±0.9) N。

关键词 金属材料纳米多层膜Ti/TiN多弧离子镀小调制周期超硬效应    
Abstract

Multilayered films Ti/TiN with 5~40 nm modulation period were prepared on a high-speed steel substrate by multi-arc ion plating technology. The microstructure and mechanical property of the films were characterized by means of scanning electron microscopy (SEM), X-ray energy dispersive spectrometer (EDS), X-ray diffraction (XRD), nanoindentation and scratch test. The effect of modulation period on the performance of multilayered films Ti/TiN was investigated. Results show that the multilayered films Ti/TiN are uniform and dense with lamellar structure but without obvious features of columnar structure. TiN film is preferentially grown along the (111) direction. The film hardness increases firstly and then decreases with the decrease of the modulation period. The maximum hardness of 42.9 GPa and the maximum H/E value werer obtained when the modulation period is 7.5 nm, which indicates that the film possesses good combination of wear resistance and toughness. In addition, the adhesion of the multilayered films Ti/TiN is generally higher than that of the single-layered TiN film. When the modulation period is 7.5 nm, multilayered films Ti/TiN present a relatively high adhesion of (58±0.9) N.

Key wordsmetallic materials    nano-multilayer    Ti/TiN    multi-arc ion plating    small modulation period    superhard effect
收稿日期: 2018-05-23     
ZTFLH:  TG148  
基金资助:山东省自然科学基金(ZR2018QEM002);山东大学(威海)青年学者未来计划
作者简介: 杨波波,男,1993年生,硕士生
图1  设备结构简图和桶装置功能示意图
图2  Ti/TiN纳米多层膜的结构示意图
图3  单层TiN薄膜和2# Ti/TiN纳米多层膜截面的SEM照片
图4  不同调制周期的Ti/TiN纳米多层膜截面的SEM照片
Sample No.Ti/TiN single layer deposition time/s

Ti/TiN single layer

thickness/nm

Modulation

period/nm

Number

of periods

Total thickness/μm
1#Ti48/TiN14410.9/28.339.2301.34
2#Ti24/TiN725.4/14.920.3601.35
3#Ti12/TiN363.2/10.013.21201.32
4#Ti9/TiN211.7/5.87.51801.33
5#Ti6/TiN18-5.22401.27
表1  Ti/TiN纳米多层膜的薄膜参数
图5  不同调制周期的Ti/TiN纳米多层膜的XRD谱
图6  Ti/TiN纳米多层膜的纳米硬度和弹性模量与调制周期的关系
图7  分别基于调制周期和较大晶粒尺寸计算出的Hall-Petch参数
Modulation period39.2 nm20.3 nm13.2 nm7.5 nm

5.2 nm

(calculation)

Singlelayer TiN
H/GPa26.928.534.442.933.925.5
E/GPa294.52310.08348.38357.88314.85302.50
H/E0.09210.09180.09860.11980.10780.084
表2  单层TiN薄膜和Ti/TiN纳米多层膜的硬度、弹性模量和H/E值
图8  不同调制周期的Ti/TiN纳米多层膜的膜基结合力
[1] Sundgren J E. Structure and properties of TiN coatings [J]. Thin Solid Films, 1985, 128: 21
[2] Zhang X, Zhou Y W, Gao J B, et al. Effect of the filament discharge current on the microstructure and performance of plasma-enhanced magnetron sputtered TiN coatings [J]. J. Alloys Compd., 2017, 725: 877
[3] Kashkarov E B, Nikitenkov N N, Sutygina A N, et al. Hydrogenation behavior of Ti-implanted Zr-1Nb alloy with TiN films deposited using filtered vacuum arc and magnetron sputtering [J]. Appl. Surf. Sci., 2018, 432: 207
[4] Song Y Z, Gao Y, Dong Z X, et al. Effects of multi-arc ion plating process parameters on binding force of TiN film [J]. Hot Working Technol., 2016, 45(14): 133
[4] (宋沂泽, 高 原, 董中新等. 多弧离子镀工艺参数对氮化钛薄膜结合力的影响研究 [J]. 热加工工艺, 2016, 45(14): 133)
[5] Wen L S, Huang R F, Guo L P, et al. Microstructure and mechanical properties of metal/ceramic Ti/TiN multilayers [J]. J. Magn. Magn. Mater., 1993, 126: 200
[6] Cheng Y Y, Pang X L, Gao K W, et al. Corrosion resistance and friction of sintered NdFeB coated with Ti/TiN multilayers [J]. Thin Solid Films, 2014, 550: 428
[7] Koehler J S. Attempt to design a strong solid [J]. Phys. Rev., 1970, 2B: 547
[8] Dück A, Gamer N, Gesatzke W, et al. Ti/TiN multilayer coatings: deposition technique, characterization and mechanical properties [J]. Surf. Coat. Technol., 2001, 142-144: 579
[9] Ghasemi S, Shanaghi A, Chu P K. Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering [J]. Thin Solid Films, 2017, 638: 96
[10] Krysina O V, Koval N N, Ivanov Y F, et al. Arc plasma-assisted deposition of nanocrystalline coatings [A]. 2012 25th International Symposium on Discharges and Electrical Insulation in Vacuum [C]. Tomsk, Russia: IEEE, 2012: 537
[11] Lang W C. Design and performance of the double dislocation perforated shielding plate used in vacuum arc deposition for high quality coating deposition [J]. Adv. Mater. Res., 2012, 340: 130
[12] Li F Q, Lin S S, Lin K S. Development and current status of decorative ion-plated hard films [J]. Electroplat. Finish., 2016, 35: 817
[12] (李福球, 林松盛, 林凯生. 离子镀硬质装饰膜的发展与现状 [J]. 电镀与涂饰, 2016, 35: 817
[13] Zhao Y H, Lin G Q, Li X N, et al. Effect of pulsed bias on microhardness of Ti/TiN multilayer films deposited by arc ion plating [J]. Acta Metall. Sin., 2015, 41: 1106
[13] 赵彦辉, 林国强, 李晓娜等. 脉冲偏压对电弧离子镀Ti/TiN纳米多层薄膜显微硬度的影响 [J]. 金属学报, 2015, 41: 1106
[14] Krella A K. Cavitation erosion resistance of Ti/TiN multilayer coatings [J]. Surf. Coat. Technol., 2013, 228: 115
[15] Xiao N, Du F F, Yang B. Effects of modulation periods on structure and adhesion strength of TiN/Ti multilayer films [J]. China Surf. Eng., 2015, 28(2): 65
[15] (肖 娜, 杜菲菲, 杨 波. 调制周期对TiN/Ti多层膜组织结构和结合力的影响 [J]. 中国表面工程, 2015, 28(2): 65)
[16] Zhao Y H, Lin G Q, Xiao J Q, et al. Ti/TiN multilayer thin films deposited by pulse biased arc ion plating [J]. Appl. Surf. Sci., 2011, 257: 2683
[17] Chun S Y, Chayahara A, Posselt M. Limitations on ultra-thin multilayers: pulsed cathodic arc and computer simulation [J]. Surf. Coat. Technol., 2004, 182: 171
[18] Kimblin C W. Erosion and ionization in the cathode spot regions of vacuum arcs [J]. J. Appl. Phys., 1973, 44: 3074
[19] Langford J I, Wilson A J C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size [J]. J. Appl. Cryst., 1978, 11: 102
[20] Patterson A L. The Scherrer formula for X-ray particle size determination [J]. Phys. Rev., 1939, 56: 978
[21] Peng Z J, Qi L H, Liu D P, et al. Study on the preparation of multicomponent superhard films with PVD method at low temperature [J]. J. Mater. Sci. Eng., 2003, 21: 110
[21] (彭志坚, 齐龙浩, 刘大鹏等. 低温PVD法制备多组分超硬薄膜研究 [J]. 材料科学与工程学报, 2003, 21: 110
[22] Du H J, Tian Y J. Hardening mechanism for nano-multilayer films [J]. J. Inorg. Mater., 2006, 21: 769
[22] (杜会静, 田永君. 超硬纳米多层膜致硬机理研究 [J]. 无机材料学报, 2006, 21: 769
[23] Hall E O. The deformation and ageing of mild steel: III discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
[24] Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
[25] Wiecinski P, Smolik J, Garbacz H, et al. Microstructure and properties of metal/ceramic and ceramic/ceramic multilayer coatings on titanium alloy Ti6Al4V [J]. Surf. Coat. Technol., 2017, 309: 709
[26] Gong H F, Shao T M. Influence of toughness on tribological performa-nce of TiN/Ti multilayer coatings [J]. J. Mater. Eng., 2009, (10): 26
[26] (龚海飞, 邵天敏. TiN/Ti多层膜韧性对摩擦学性能的影响 [J]. 材料工程, 2009, (10): 26)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.