Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (2): 155-160    DOI: 10.11901/1005.3093.2018.373
  本期目录 | 过刊浏览 |
SiBN三元陶瓷纤维的聚硼硅氮烷裂解转化制备和性能
崔永杰,刘勇(),彭帅,韩克清,余木火
纤维材料改性国家重点实验室 东华大学材料科学与工程学院 上海 201620
Preparation and Property of SiBN Ternary Ceramic Fibers Prepared by Polyborosilazane-Derived Method
Yongjie CUI,Yong LIU(),Shuai PENG,Keqing HAN,Muhuo YU
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
引用本文:

崔永杰,刘勇,彭帅,韩克清,余木火. SiBN三元陶瓷纤维的聚硼硅氮烷裂解转化制备和性能[J]. 材料研究学报, 2019, 33(2): 155-160.
Yongjie CUI, Yong LIU, Shuai PENG, Keqing HAN, Muhuo YU. Preparation and Property of SiBN Ternary Ceramic Fibers Prepared by Polyborosilazane-Derived Method[J]. Chinese Journal of Materials Research, 2019, 33(2): 155-160.

全文: PDF(3597 KB)   HTML
摘要: 

以三氯硅烷、六甲基二硅氮烷、三氯化硼和甲胺为原料合成聚硼硅氮烷前驱体,对前驱体进行熔融纺丝和不熔化处理,将其高温裂解后制备出SiBN陶瓷纤维。使用FT-IR、NMR、XRD、TEM、TGA等表征手段研究了在不同聚合温度下聚硼硅氮烷前驱体的化学结构特征、SiBN陶瓷纤维的高温热稳定性、介电性能以及力学性能。结果表明:在不同温度下制备的聚硼硅氮烷前驱体的骨架为Si-N-B,均含有HSiN3、BN3及NCH3等结构。在1400℃热处理后SiBN陶瓷纤维仍保持无定形态,直径为14 μm,拉伸强度达到0.91 GPa。在氮气气氛中SiBN陶瓷纤维从室温到1400℃的失重为1.5%,表明这种纤维具有较高的热稳定性。SiBN陶瓷纤维的介电常数为2.6~2.8,损耗角正切的数量级为10-2

关键词 无机非金属材料聚硼硅氮烷高温裂解SiBN陶瓷纤维热稳定性介电性能    
Abstract

Polyborosiliazne precursor was synthesized via multi-stage polymerization process with HSiCl3, Me6Si2NH, BCl3 and CH3NH2 as raw materials. Then SiBN ceramic fibers were obtained by melt spinning, curing and pyrolysis of the as-synthesized polyborosilazane precursor. The chemical structure, high temperature thermal stability, dielectric property and mechanical property of the polyborosilazane and its pyrolysis products were investigated by FT-IR, NMR, XRD, TEM and TGA. FT-IR and NMR. Results show that the polyborosilazane precursors prepared at different temperatures exhibited similar chemical structures, namely, containing Si-N, B-N and N-CH3 bonds. The obtained SiBN ceramic fibers remained amorphous structure with 14 μm in diameter and 0.91 GPa in tensile strength after heat treatment at 1400oC. The SiBN ceramic fibers have excellent thermal stability with only 1.5% mass loss in the temperature range from room temperature to 1400oC. The dielectric constant and dielectric loss loss tangent magnitude of SiBN ceramic fibers are 2.6~2.8 and 10-2 at 1100oC, respectively.

Key wordsinorganic nonmetallic materials    polyborosilazane    pyrolysis    SiBN ceramic fiber    thermal stability    dielectric property
收稿日期: 2018-06-06     
ZTFLH:  TQ343  
基金资助:国家自然科学基金(51703025)
作者简介: 崔永杰,男,1994年生,硕士生
图1  不同聚合温度制备的PBSZ前驱体的FT-IR谱
图2  在不同温度聚合制备的PBSZ前驱体的13C-MAS NMR谱
图3  不同聚合温度制备的PBSZ前驱体的29Si-MAS NMR谱
图4  不同聚合温度制备的PBSZ前驱体的11B-NMR谱图
图5  PBSZ前驱体的制备反应过程
图6  不同温度裂解得到的SiBN陶瓷纤维的XRD谱
图7  1400℃裂解得到的SiBN陶瓷纤维的TEM照片
图8  SiBN陶瓷纤维的TGA曲线(N2气氛)
图9  SiBN陶瓷纤维介电常数和损耗角正切值随裂解温度的变化
Sample

Strength

/cN

Elongation

/%

Diameter

/μm

Tensile strength

/GPa

PBSZ green fibers6.915.1200.22
Cured fibers8.794.2190.31
Pyrolyzed fibers in 1100℃13.391.9140.87
Pyrolyzed fibers in 1400℃14.011.1140.91
表1  PBSZ初生纤维、不熔化纤维及不同裂解温度得到的SiBN纤维的力学性能
[1] Luan X G, Chang S, Riedel R, et al. An air stable high temperature adhesive from modified SiBCN precursor synthesized via polymer-derived-ceramic route [J]. Ceram. Int., 2018, 44: 8476
[2] Hannemann A, Sch?n J C, Jansen M, et al. Nonequilibrium dynamics in amorphous Si3B3N7 [J]. J. Phys. Chem., 2005, 109B: 11770
[3] Ji X Y, Wang S S, Shao C W, et al. High-temperature corrosion behavior of SiBCN fibers for aerospace applications [J]. ACS Appl. Mater. Interfaces, 2018, 10: 19712
[4] Tang Y, Wang J, Li X D, et al. Performance of polyborosilazane and SiBNC ceramics thereof [J]. Chin. J. Mater. Res., 2008, 22: 291
[4] (唐 云, 王 军, 李效东等. 聚硼硅氮烷先驱体的合成及其目标陶瓷SiBNC的性能 [J]. 材料研究学报, 2008, 22: 291
[5] Liu Y, Chen K Z, Dong F B, et al. Effects of hydrolysis of precursor on the structures and properties of polymer-derived SiBN ceramic fibers [J]. Ceram. Int., 2018, 44: 10199
[6] Van Wüllen L, Jansen M. The role of carbon in the nitridic high performance ceramics in the system Si-B-N-C [J]. Solid State Nucl. Magn. Reson., 2005, 27: 90
[7] J?schke T, Jansen M. Synthesis and characterization of new amorphous Si/B/N/C ceramics with increased carbon content through single-source precursors [J]. C. R. Chim., 2004, 7: 471
[8] J?schke T, Jansen M. Improved durability of Si/B/N/C random inorganic networks [J]. J. Eur. Ceram. Soc., 2005, 25: 211
[9] Tang Y, Wang J, Li X D, et al. Polymer-derived SiBN fiber for high-temperature structural/functional applications [J]. Chem. Eur. J., 2010, 16: 6458
[10] Yuan J, Han K Q, Zhao X, et al. Melt spinning process and characterization of precursors for SiBN(C) ceramic fiber [J]. Chin. Syn. Fiber Ind., 2011, 34: 1
[10] (袁 佳, 韩克清, 赵 曦等. SiBN(C)陶瓷纤维先驱体的表征及熔融纺丝 [J]. 合成纤维工业, 2011, 34: 1
[11] Colombo P, Mera G, Riedel R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics [J]. J. Am. Ceram. Soc., 2010, 93: 1805
[12] Ge K K, Ye L, Han W J, et al. Pyrolysis of polyborosilazane and its conversion into SiBN ceramic [J]. Adv. Appl. Ceram., 2014, 113:367
[13] Tang Y, Wang J, Li X D, et al. Preparation of high performance Si-B-N ceramic fibers by polymer derived method [J]. Acta Chim. Sin., 2009, 67: 2750
[13] (唐 云, 王 军, 李效东等. 先驱体转化法制备高性能Si-B-N陶瓷纤维 [J]. 化学学报, 2009, 67: 2750
[14] Tang Y, Wang J, Li X D, et al. Preceramic polymer for Si-B-N-C fiber via one-step condensation of silane, BCl3, and Silazane [J]. J. Appl. Polym. Sci., 2008, 110: 921
[15] Li W H, Wang J, Xie Z F, et al. Preparation of hollow Si-B-N ceramic fibers by partial curing and pyrolysis of polyborosilazane fibers [J]. Mater. Lett., 2012, 78: 1
[16] Peng Y Q, Han K Q, Zhao X, et al. Large-scale preparation of SiBN ceramic fibres from a single source precursor [J]. Ceram. Int., 2014, 40: 4797
[17] Funayama O, Nakahara H, Okoda M, et al. Conversion mechanism of polyborosilazane into silicon nitride-based ceramics [J]. J. Mater. Sci., 1995, 30: 410
[18] Funayama O, Kato T, Tashiro Y, et al. Synthesis of a polyborosilazane and its conversion into inorganic compounds [J]. J. Am. Ceram. Soc., 1993, 76: 717
[19] Wideman T, Fazen P J, Su K, et al. Second-generation polymeric precursors for BN and SiNCB ceramic materials [J]. Appl. Organomet. Chem., 1998, 12: 681
[20] Wideman T, Cortez E, Remsen E E, et al. Reactions of monofunctional boranes with hydridopolysilazane: synthesis, characterization, and ceramic conversion reactions of new processible precursors to SiNCB ceramic materials [J]. Chem. Mater., 1997, 9: 2218
[21] Mou S W, Hu J J, Wang H F, et al. Structure and rheological property of polyborosilazane [J]. J. Mater. Sci. Eng., 2016, 34: 63
[21] (牟世伟, 胡建建, 王会峰等. SiBNC陶瓷纤维前驱体的结构及流变性能 [J]. 材料科学与工程学报, 2016, 34: 63
[22] Huang X H, Liu Y, Zhang C Y, et al. Decarburization research of SiBN ceramic fibers [J]. Chin. Syn. Fiber Ind., 2017, 40: 1
[22] (黄先华, 刘 勇, 张晨宇等. SiBN陶瓷纤维的脱碳工艺研究 [J]. 合成纤维工业, 2017, 40: 1
[23] Gervais C, Babonneau F, Ruwisch L, et al. Solid-state NMR investigations of the polymer route to SiBCN ceramics [J]. Can. J. Chem., 2003, 81: 1359
[24] Liu Y, Peng S, Cui Y J, et al. Fabrication and properties of precursor-derived SiBN ternary ceramic fibers [J]. Mater. Des., 2017, 128: 150
[25] Schuhmacher J, Berger F, Weinmann M, et al. Solid-state NMR and FT IR studies of the preparation of Si-B-C-N ceramics from boron-modified polysilazanes [J]. Appl. Organomet. Chem., 2001, 15: 809
[26] Cheng F, Toury B, Archibald S J, et al. Synthesis and structure of 2,4,6-tris [tris (dimethylamino) silylamino] borazine: {[(CH3)2N]3-SiNH}3B3N3H3 [J]. J. Organomet. Chem., 2002, 657: 71
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.