Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (1): 49-56    DOI: 10.11901/1005.3093.2016.170
  本期目录 | 过刊浏览 |
硼硫酸阳极氧化6061铝合金在不同大气环境中的初期腐蚀行为研究
王沙沙1,杨浪1,黄运华1,2(),肖葵1,2,李晓刚1,2
1 北京科技大学腐蚀与防护中心 北京 100083
2 腐蚀与防护教育部重点实验室 北京 100083
Initial Corrosion Behavior in Different Atmospheric Environments of 6061Al Alloy Anodized in Boron-sulfuric Acid Solution
Shasha WANG1,Lang YANG1,Yunhua HUANG1,2(),Kui XIAO1,2,Xiaogang LI1,2
1 Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory for Corrosion and Protection (MOE), Beijing 100083, China
引用本文:

王沙沙,杨浪,黄运华,肖葵,李晓刚. 硼硫酸阳极氧化6061铝合金在不同大气环境中的初期腐蚀行为研究[J]. 材料研究学报, 2017, 31(1): 49-56.
Shasha WANG, Lang YANG, Yunhua HUANG, Kui XIAO, Xiaogang LI. Initial Corrosion Behavior in Different Atmospheric Environments of 6061Al Alloy Anodized in Boron-sulfuric Acid Solution[J]. Chinese Journal of Materials Research, 2017, 31(1): 49-56.

全文: PDF(8968 KB)   HTML
摘要: 

通过在青岛和北京进行6061铝合金户外大气暴露实验, 利用形貌观察、失重分析、力学性能分析和断面分析等方法, 研究了经硼硫酸阳极氧化处理的6061铝合金在工业-海洋大气环境和北方半乡村大气环境中的初期腐蚀规律和机理。结果表明, 表面阳极氧化的试样与裸材相比, 在工业-海洋大气环境和北方半乡村大气环境一年暴露试验的平均腐蚀速率分别下降43.4%和10.1%, 即阳极氧化处理降低材料腐蚀速率, 且在恶劣腐蚀环境下的效果更明显; 但相对于裸材在工业-海洋大气环境一年暴露试验后的延伸率比初始值下降35%, 阳极氧化试样的延伸率下降幅度仍达23%, 即硼硫酸阳极氧化对工业-海洋大气环境下合金的力学性能保护不够, 塑性降低幅度大, 对应的断裂机理发生改变, 点蚀导致合金表层从韧性断裂转变为解理脆性断裂。

关键词 材料失效与保护点蚀硼硫酸阳极氧化6061铝合金大气腐蚀    
Abstract

The initial corrosion behavior and mechanism of 6061 aluminum alloy anodized in a solution of mixed boron-sulfuric acidswere studiedthrough outdoor exposure tests in industry-marine and northernsemi-ruralatmospheric environments at Qingdao and Beijing respectively by means of weight-loss measurement, mechanical property testand morphology observation of surface andfracture surface. The results show that after exposed in the industry-marine and the northernsemi-ruralatmospheric environment for one year, the average corrosion rates of the anodized alloy decrease 43.3% and 10.1%, respectively in comparison to the naked alloy, thus the anodic treatment impedes the corrosion and this effect is much efficient in the severer environment. The break elongation of the naked alloy exposed in industry-marine environment for one year decreases 35% in comparison with the original one, but the decrease for the anodized alloy is 23%. Therefore, the anodization with boron-sulfuric acid is not enough to prevent the plasticity deterioration of the alloy; correspondingly, ductile fracture of the surface layer has changed to brittle cleavage. Nevertheless, the above results provide an important reference to the corrosion and protection of aviation materials.

Key wordsmaterials failure and protection    pitting corrosion    anodizingin boron-sulfuric acid    6061 aluminum alloy    atmospheric corrosion
收稿日期: 2016-03-31     
基金资助:国家重点基础研究发展计划(2014CB643300)、国家自然科学基金(51471033)和国家材料环境腐蚀平台
Mg Si Cu Cr Femax Mnmax Znmax Timax Al
0.8~1.2 0.4~0.8 0.15~0.4 0.04~0.35 0.7 0.15 0.25 0.15 Bal.
表1  6061铝合金的化学成分
Experiment stations Climate Weather factor
(annual average)
Corrosion concentration
(mg/100 cm2d)
Qingdao
36.05°N,120.29°E
Altitude: 12 m
North temperate monsoon climate and oceanclimate Temperature: 12.7℃
Rainfall: 955.2 mm
Relative Humidity: 74.6%
H2S: 0.0607
Sea-salt particles: 0.5606
Sulfation rate: 0.3287
Beijing
39.98°N,116.26°E
Altitude: 73 m
Warm temperate and semi - humid,semi-rural atmospheric Temperature:13.8℃
Rainfall: 388.8 mm
Relative Humidity: 44.6%
H2S: 0.0575
Sea-salt particles: 0.0313
Sulfation rate: 0.2869
表2  青岛和北京大气暴露实验站的实验条件(2014年)
City Sample Exposure duration Average corrosion rate 10-3mm/a
Naked six months 7.333
Qingdao Naked alloy one year 5.851
Anodized alloy one year 3.312
Naked six months 5.139
Beijing Naked alloy one year 2.604
Anodized alloy one year 2.342
表3  各组试样的平均腐蚀速率
图1  各试样除锈前宏观腐蚀形貌
图2  各试样除锈后微观腐蚀形貌
图3  青岛站和北京站暴露试样的截面图及能谱分析
图4  青岛站暴露后试样拉伸断口宏观形貌(a,d,g)、断口边缘(b,e,h)和中心(c,f,i)的SEM图。(a,b,c)裸材/半年,(d,e,f)裸材/1 年,(g,h,i)硼硫酸阳极氧化合金/1 年
图5  北京站暴露后试样拉伸断口宏观形貌(a,d,g)、断口边缘(b,e,h)和中心(c,f,i)的SEM图。(a,b,c)裸材/半年,(d,e,f)裸材/1 年,(g,h,i)硼硫酸阳极氧化合金/1 年
City Sample σP0.2/MPa σb/MPa δ/%
Naked alloy 265 295 19.0
Anodized alloy 268 300 18.9
Naked alloy/six months 259 291 16.1
Qingdao Naked alloy/one year 254 289 12.3
Anodized /one year 253 283 14.6
Naked alloy/six months 265 295 18.2
Beijing Naked alloy/one year 264 294 18.0
Anodized /one year 260 291 18.8
表4  6061铝合金试样力学性能数据
[1] Zaid B, Saidi D, Benzaid A, et al.Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy[J]. Corros. Sci., 2008, 50(7): 1841
[2] Feng C, Huang Y H, Shen Y F, et al.Galvanic corrosion and protection of 6061 aluminum alloy coupled with 30CrMnSiA steel in simulative industry-marine atmospheric environment[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(6): 1417
[2] (冯驰, 黄运华, 申玉芳等. 6061 铝合金与30CrMnSiA 结构钢在模拟工业-海洋大气环境下的电偶腐蚀防护[J]. 中国有色金属学报, 2015, 25(6): 1417)
[3] Critchlow G W, Yendall K A, Bahrani D, et al.Strategies for the replacement of chromic acid anodising for the structural bonding of aluminum alloys[J]. Int. J. Adhes. Adhes., 2006, 26(6): 419
[4] Liu J H, Li Y G, Yu M, et al.Effects of ammonium adipate on sulphuric acid anodizing of 7075-T6 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(1): 324
[4] (刘建华, 李永星, 于美等. 己二酸铵对7075-T6 铝合金硫酸阳极氧化的影响[J].中国有色金属学报, 2012, 22(1): 324)
[5] Wang S X, Zhao Q, Du N, et al.Sealing effect of cerium salt on boric-sulfuric acid anodic film of aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(4): 1132
[5] (王帅星, 赵晴, 杜楠等. 铈盐对铝合金硼酸-硫酸阳极氧化膜的封闭效应[J]. 中国有色金属学报, 2012, 22(4): 1132)
[6] Li S M, Yao W H, Liu J H, et al.Study on anodic oxidation process and property of composite film formed on Ti-10V-2Fe-3Al alloy in SiC nanoparticle suspension[J]. Surf. Coat. Technol., 2015, 277: 234
[7] Yoganandan G, Balaraju J N, Christopher H C L, et al. Electrochemical and long term corrosion behavior of Mn and Mo oxyanions sealed anodic oxide surface developed on aerospace aluminum alloy (AA2024)[J]. Surf. Coat. Technol., 2016, 288: 115
[8] Zhang D Y, Dong G N, Chen Y.J., et al. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties[J]. Appl. Surf. Sci., 2014, 290: 466
[9] Kong D J, Wang J C, Liu H, Surface-interface structures and characteristics of anodic oxidation film on 7475 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(7): 174
[9] (孔德军, 王进春, 刘浩. 7475铝合金阳极氧化膜表面-界面组织与特征[J]. 中国有色金属学报, 2014, 24(7): 1744)
[10] Zhang P.The Study on Correlation Between Microstructure and Microhardness of Anodic Films on Aluminum Alloy and Preparation Technology ,Master Thesis[D]. Beijing:Beijing University of Chemical Technology, 2013)
[10] (张培. 铝合金阳极氧化膜结构、制备工艺及显微硬度的关系研究,硕士学位论文[D]. 北京: 北京化工大学, 2013)
[11] Zhou H R, Li X G, Dong C F.Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it’s anodic film[J]. Equipment Environmental Engineering, 2006, 3(1): 1
[11] (周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展[J]. 装备环境工程, 2006, 3(1): 1)
[12] Feng C, Huang Y H, Shen Y F, et al.Effort of surface on the corrosion resistance of 6061 aluminum alloy[J]. Equipment Environmental Engineering, 2015, 12(4): 100
[12] (冯驰, 黄运华, 申玉芳等. 不同表面状态对6061铝合金耐蚀性能的影响研究[J]. 装备环境工程, 2015, 12(4): 100)
[13] Kong D J, Wang J H, Salt spray corrosion and electrochemical corrosion propertiesof anodic oxide film on 7475 aluminum alloy[J]. J. Alloys Compd., 2015, 632: 286
[14] Wang B B, Wang, Z Y, Han W ,et al. Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in Western China[J]. Corros. Sci., 2012, 59: 63
[15] Mubarok M Z, Wahab, Sutarno, et al.Effects of anodizing parameters in tartaric-sulphuric acid on coating thickness and corrosion resistance of Al 2024 T3 alloy[J]. Journal of Minerals and Materials Characterization and Engineering, 2015, 3(3): 154
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.