Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (6): 422-428    DOI: 10.11901/1005.3093.2015.768
  本期目录 | 过刊浏览 |
SiO2颗粒对碳钢表面电化学特性的影响
李爱娇,王燕华(),钟莲,王佳,冯林,杨培培
中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
Influence of SiO2 Particles on Electrochemical Characteristics of Carbon Steel
Aijiao LI,Yanhua WANG(),Lian ZHONG,Jia WANG,Lin FENG,Peipei YANG
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

李爱娇,王燕华,钟莲,王佳,冯林,杨培培. SiO2颗粒对碳钢表面电化学特性的影响[J]. 材料研究学报, 2017, 31(6): 422-428.
Aijiao LI, Yanhua WANG, Lian ZHONG, Jia WANG, Lin FENG, Peipei YANG. Influence of SiO2 Particles on Electrochemical Characteristics of Carbon Steel[J]. Chinese Journal of Materials Research, 2017, 31(6): 422-428.

全文: PDF(2366 KB)   HTML
摘要: 

应用阵列电极技术、电化学阻抗技术等研究了惰性固体颗粒SiO2对碳钢表面电化学特性的影响。研究发现,液滴在碳钢表面的铺展因子随SiO2沉积量增加而增大,腐蚀活性区域增加。另一方面SiO2颗粒在碳钢表面的沉积改变了液滴下碳钢电化学阻抗谱图,阻抗谱中出现两个容抗弧,高频容抗弧反映了其物理阻挡作用。液滴下碳钢腐蚀受液滴铺展和SiO2颗粒物理阻挡两方面共同作用。平均电流值随SiO2沉积量先减小后增大,所以SiO2沉积量存在一个临界值。低于临界值时,惰性SiO2颗粒阻碍腐蚀;高于临界值时,则加速腐蚀。

关键词 材料失效与保护铺展因子阵列电极沉积量SiO2颗粒    
Abstract

The influence of inert solid particles SiO2 on electrochemical characteristics of carbon steel was studied by using the array electrode technique and the electrochemical impedance spectroscopy. It was found that the spreadability of droplets increased with the increase of the amount of SiO2,as well as the corrosion activity area.In addition, the impedance spectra showed two capacitive loops with the deposition of SiO2 particles, and the capacitive loop in the high frequencies was attributed to the blocking effect of the SiO2 particles. The corrosion behavior of carbon steel was affected by these two aspects, the spreadability of droplets and the blocking effect of the SiO2 particles. With the increase of the amount of SiO2, the average current value decreased firstly and then increased. There was a critical value in the deposition amount of SiO2 particles. When the amount was lower than the critical value, it could hinder corrosion. While, when the amount was higher than the critical value, it would accelerate corrosion owing to the expansion of droplets.

Key wordsmaterials failure and protection    spreadability    array electrode    deposition    SiO2 particles
收稿日期: 2016-03-17     
基金资助:国家自然科学基金(51131005)、山东省优秀中青年科学家奖励基金(BS2012HZ021)
图1  NaCl液滴下碳钢表面不同时间的电流分布图
图2  不同沉积量时NaCl液滴下碳钢表面的电流分布图
图3  NaCl液滴铺展因子和液滴下碳钢的平均电流随SiO2沉积量的变化曲线
图4  不同沉积量时,NaCl液滴下碳钢的电化学阻抗谱图
图5  NaCl液滴下碳钢腐蚀的阻抗拟合等效电路图
图6  Rct和R1随SiO2沉积量的变化曲线
图7  在-800 mV极化电位下,碳钢的阴极极限电流密度随SiO2沉积量的变化曲线
图8  不同沉积量时,NaCl液滴下碳钢的腐蚀机理示意图
[1] LIU Y C, HE H.Analysis of chemical composition of atmospheric particles[J]. Progress in Chemistry, 2007, 19(10): 1620
[1] (刘永春, 贺泓. 大气颗粒物化学组成分析[J]. 化学进展, 2007, 19(10): 1620)
[2] Shengxi Li, L. H. H. Aerosol Salt Particle Deposition on Metals Exposed to Marine Environments: A Study Related to Marine Atmospheric Corrosion[J]. Journal of the Electrochemical Society, 2014, 161(5): 268
[3] Shengxi Li, L. H. H. Atmospheric corrosion initiation on steel from predeposited NaCl salt particles in high humidity atmospheres[J]. Corrosion Engineering, Science and Technology, 2010, 45(1): 49
[4] Shengxi Li, L. H. H. In situ Raman spectroscopic study of NaCl particle-induced marine atmospheric corrosion of carbon steel[J]. Journal of the Electrochemical Society, 2012, 159(4): 147
[5] ZHANG D D, ZHAO C Y, WANG C, et al.Atmospheric aerosols corrosion[J]. Journal of Chinese Society for Corrosion and Protection, 2015, 35(02): 91
[5] (张丹丹, 赵春英, 汪川等. 大气气溶胶腐蚀[J]. 中国腐蚀与防护学报, 2015, 35(02): 91)
[6] Soon-Chang Yoon, Jiyoung Kim.Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia[J]. Atmospheric Environment, 2006, 40: 4328
[7] Bohren C F, Huffman D R.Absorption and scattering of light by small particles[J]. John Wiley and Sons Inc, 1983, 82
[8] Derek E. Day, William C.Malm. Aerosol light scattering measurements as a function of relative humidity: a comparison between measurements made at three different sites[J]. Atmospheric Environment, 2001, 35: 5169
[9] G. A. Ferron, E. Karg, B. Busch, et al.Ambient particles at an urban, semi-urban and rural site in Central Europe: hygroscopic properties[J]. Atmospheric Environment, 2005, 39: 343
[10] A Osite, J Katkevich, A Viksna1, et al. Electrochemical impedance spectra of particulate matter and smoke,[J]. Materials Science and Engineering, 2011, 23: 1
[11] A. ASKEr S. B. LYON G.The effect of fly-ash particulates on the atmospheric corrosion of zinc and mild steel[J]. Corrosion Science, 199334(7): 1055
[12] W. H. J.Vernon. A laboratory study of the atmospheric corrosion of metals[J]. Trans. Farady. Soc., 1931, 255
[13] LIN Xueyan.Effect of atmospheric corrosion on electric contact reliability, [D]. Beijing: Beijing University of Posts and Telecommunications, 2009
[13] (林雪燕. 连接器触点表面的大气腐蚀[D]. 北京: 北京邮电大学,2009)
[14] GUO Rui, LIN Xueyan.Corrosion properties of the dust particles[J]. Electromechanical components, 2004, 24(1): 3
[14] (郭锐, 林雪燕. 尘土颗粒的腐蚀特性[J]. 机电元件, 2004, 24(1): 3)
[15] LV Ruixue, LIN Xueyan.Experimental research on simulation method of dust corrosion[A]. 2010the Chinese electronic society the 16th electronic components academic essays[C]. Jiangsu Kunshan, 2010
[15] (吕瑞雪, 林雪燕. 尘土腐蚀的实验室模拟方法[A]. 2010年中国电子学会第十六届电子元件学术年会论文集[C]. 江苏昆山, 2010)
[16] J. R. Walton, J. B. Johnson, G. C. Wood.Atmospheric Corrosion Initiation by Sulphur Dioxide and Particulate Matter II. Characterisation and corrosivity of individual particulate atmospheric pollutants[J]. British Corrosion Journal, 1982, 17(2): 65
[17] QU Qing, YAN Chuanwei, BAI Wei, et. al. Role of NaCl in the atmospheric corrosion of A3 steel[J]. Journal of Chinese Society for Corrosion and Protection, 2003, 23(3): 160
[17] (屈庆, 严川伟, 白玮等. NaCl在A3钢大气腐蚀中的作用[J]. 中国腐蚀与防护学报, 2003, 23(3): 160)
[18] WAN Ye, YAN Chuanwei, CAO Chunan.Atmospheric corrosion of A3 steel deposited with different salts[J]. Acta Phys-Chim. Sinica.,2004, 20(3): 659
[18] (万晔, 严川伟, 曹楚南. 可溶盐沉积对碳钢大气腐蚀的影响[J]. 物理化学学报, 2004, 20(3): 659)
[19] ZHANG Jibiao, WANG Jia, WANG Yanghua.The deliquescence and spreading of sea salt particles on carbon steel and atmospheric corrosion[J]. Marine Corrosion, 2005, 29(7): 17
[19] (张际标, 王佳, 王燕华. 海盐粒子沉积下碳钢的大气腐蚀初期行为[J]. 海洋科学, 2005, 29(7): 17)
[20] Bo Song, M. H. A. A. Effect of Temperature and Relative Humidity on the Impedance Degradation of Dust-Contaminated Electronics[J]. Journal of The Electrochemical Society, 2013, 160(3): 97
[21] XU R, WANG Y H, WANG J, et. al. Influence of spreadability of seawater droplet on electrochemical characteristics of carbon steel[J]. Chinese Journal of Materials Research, 2015, 29(02): 95
[21] (续冉, 王燕华, 王佳等. 海水液滴铺展因子对碳钢表面电化学特性的影响[J]. 材料研究学报, 2015, 29(02): 95)
[22] Shengxi Li, L. H. Hihara. Atmospheric-corrosion electrochemistry of NaCl droplets on carbon steel[J]. Journal of The Electrochemical Society, 2012, 159(11): 461
[23] Goldstein E M.The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications, Journal of Chemical Education, 1960, 12: 662
[24] Muster T.H., Bradbury A., Trinchi A., et. al.The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape[J]. Electrochimica Acta, 2011, 56(4): 1866
[25] FU X C, SHEN W X, YAO T T, et. al.Physical Chemistry: 2, the 5th Edition[M]. Beijing: Higher Education Press, 2006
[25] (傅献彩, 沈文霞, 姚天扬等, 物理化学(第五版下册)[M]. 北京: 高等教育出版社, 2006)
[26] Guan K S, Jiang Q P, Yin Y S.Super-Hydrophilicity of TiO2/SiO2/CeO2 Composite Thin Films[J]. Journal of the Chinese Rare Earth Society, 2003, 21(03): 291
[26] (关凯书, 姜秋鹏, 尹衍升. TiO2/SiO2/CeO2复合纳米薄膜超亲水性能的研究[J]. 中国稀土学报, 2003, 21(03): 291)
[27] Emilie Dubuisson, Philippe Lavie, Francis Dalard, et. al. Study of the atmospheric corrosion of galvanized steel in a micrometric electrolytic droplet[J]. Electrochemistry Communications, 2006, 8(6): 911
[28] JIANG Jing.The role of liquid dispersion in gas/liquid/solid multiphase corrosion systems[D]. Qingdao: Ocean University of China,2009
[28] (姜晶. 液相分散程度在气/液/固多相体系腐蚀过程中的作用[D]. 青岛: 中国海洋大学, 2009)
[29] JIANG J, WANG J.Effect of gas/liquid/solid three-phase boundary zone on cathodic process of metal corrosion[J]. Corrosion Science and Protection Technology, 2009, 21(02): 79
[29] (姜晶, 王佳. 气/液/固三相线界面区的性质在金属腐蚀阴极过程中的作用[J]. 腐蚀科学与防护技术, 2009, 21(02): 79)
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.