|
|
He等离子体辅助的纳米钨结构材料的制备 |
郝志玲,范红玉( ),郭佳玉,胡婷婷,李萌,崔荷敬,张碧璇 |
大连民族大学物理与材料工程学院 大连 116600 |
|
He Plasma Assisted Preparation of Nanostructure Tungsten Materials |
Zhiling HAO,Hongyu FAN,Jiayu GUO( ),Tingting HU,Meng LI,Hejing CUI,Bixuan ZHANG |
School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China |
引用本文:
郝志玲,范红玉,郭佳玉,胡婷婷,李萌,崔荷敬,张碧璇. He等离子体辅助的纳米钨结构材料的制备[J]. 材料研究学报, 2017, 31(6): 415-421.
Zhiling HAO,
Hongyu FAN,
Jiayu GUO,
Tingting HU,
Meng LI,
Hejing CUI,
Bixuan ZHANG.
He Plasma Assisted Preparation of Nanostructure Tungsten Materials[J]. Chinese Journal of Materials Research, 2017, 31(6): 415-421.
[1] | M. G. Walter, E. L.Warren, J. R.McKone, et al. Solar water splitting cells[J]. Chem.Rev, 2010, 110(11): 6446 | [2] | C. G.Morales-Guio, L. Stern, X. L. Hu. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chem. Soc.Rev, 2014, 43: 6555 | [3] | R. L. Chamousis, F. E. Osterloh.Use of potential determining ionsto control energetics and photochemical charge transfer of a nanoscale water splitting photocatalyst[J]. Energy Environ. Sci, 2014, 7: 736 | [4] | A. Fujishima, K. Honda.Electrochemical Photolysis ofWater at aSemiconductor Electrode[J]. Nature, 1972, 238: 7 | [5] | T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, Photo-electrochemicalhydrogen generation from water using solar energy[J]. Materials-related aspects, Int. J. Hydrogen.Energy, 2002, 27(10): 991 | [6] | A. Currao.Photoelectrochemical water splitting[J]. Chimia, 2007, 61: 815 | [7] | LI H J, CHEN G, LI Z H.Synthesis and photocatalytic decomposition of water under visible light irradiation of La2Ti2-xCoxO7 with pyrochlore structure[J] Acta Phys. - Chim. Sin., 2007, 23(5): 761 | [7] | (李鸿建, 陈刚, 李中华, 烧绿石结构La2Ti2-xCoxO7的制备及可见光分解水性能, 物理化学学报, 2007, 23(5): 761) | [8] | F. E. Osterloh.Inorganic nanostructures for photoelectrochemicaland photocatalytic water splitting[J]. Chem. Soc. Rev, 2013, 42: 2294 | [9] | J. Son, J. Wang, F. E.O sterloh, et al. Casey, A tellurium-substituted Lindqvist- type polyoxoniobate showing high H2 evolutioncatalyzed by tellurium nanowires via photodecomposition[J]. Chem.Commun, 2014, 50: 836 | [10] | Z. Jiao, J. Wang, L. Ke, et al.Morphology-Tailored synthesis of tungsten trioxide (hydrate) thin films and theirphotocatalytic properties[J]. Appl. Mater. Interfaces, 2011, 3: 229 | [11] | C. Janáky, K. Rajeshwar, N. R. de Tacconi, et al. Tungsten- based oxidesemiconductors for solar hydrogengeneration[J]. Catal. Today, 2013, 199: 53 | [12] | R. Solarska, K. Bienkowski, S. Zoladek, et al.Enhanced water splitting at thin filmtungsten trioxide photoanodes bearing plasmonic gold- polyoxometalate particles[J]. Angew. Chem. Int. Ed, 2014, 53: 14196 | [13] | B. A. Aragaw, C. Pan, W. Su, et al.Facileone- pot controlled synthesis of Sn and C codoped single crystal TiO2 nanowire arrays for highly efficient photoelectrochemical water splitting[J]. Appl. Catal. B, 2015, 163: 78 | [14] | X. Liu, F. Y. Wang, Q. Wang.Nanostructure- based WO3 photoanodes for photoelectrochemical water splittin[J]. Phys. Chem.Chem. Phys, 2012, 14: 794 | [15] | V. Cristino, S. Caramori, R. Argazzi, et al.Efficient Photoelectrochemical Water Splitting by Anodically Grown WO3 Electrodes[J]. Langmuir, 2011, 27(11): 7276 | [16] | C. Santato, M. Odziemkowski, M. Ulmann, et al.Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications[J]. J. Am. Chem. Soc, 2001, 123(43): 10639 | [17] | C. Santato, M. Ulmann, J. Augustynski.Enhanced visible light conversion efficiency using nanocrystalline WO3 films[J]. Adv. Mater, 2001, 13(7): 511 | [18] | B. Yang, Y. Zhang, E. Drabarek, et al.Enhanced photoelectrochemical activity of sol- gel tungsten trioxidefilms through textural control[J]. Chem. Mater, 2007, 19(23): 5664 | [19] | B. Marsen, E. L. Miller, D. Paluselli, et al.Progress insputtered tungsten trioxide for photoelectrode applications[J]. Int. J. Hydrogen Energy, 2007, 32(15): 3110 | [20] | H. Zheng, A. Z. Sadek, K. Latham, et al.Nanoporous WO3 from anodized RF sputtered tungsten thin films[J]. Electrochem. Commun, 2009, 11(4): 768 | [21] | X. Zhang, X. Lu, Y. Shen, et al.Threedimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis[J]. Chem.Commun, 2011, 47: 5804 | [22] | V.Chakrapani, J. Thangala, M. K. Sunkara.WO3 and W2N nanowirearrays for photoelectrochemical hydrogen production[J]. Int. J. Hydrogen. Energy, 2009, 34(22): 9050 | [23] | Q. Yang, Y. You, L. Liu, et al.Nanostructured fuzz growth ontungsten underlow-energy andhigh-flux He irradiation[J]. Scientific Reports, 2015, 5, 10959 | [24] | Q. Yang, H. Fan, W. Ni, et al.Observation of interstitial loops in He + irradiated W byconductive atomicforce microscopy[J]. Acta Material, 2015, 92: 178 | [25] | D. Nishijima, M. Y. Ye, N. Ohno, et al. Incident ion energydependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation [J]. J. Nucl. Mater, 2003, 313-316: 97 | [26] | A. Debelle, M. F. Barthe, T. Sauvage, et al.Helium behaviour and vacancy defect distribution in helium implanted tungsten[J]. J. Nucl. Mater, 2007, 362: 181 | [27] | Y. Watanabe, H. Iwakiri, N. Yoshida, et al.Formation of interstitial loops in tungsten under helium ion irradiation: Rate theory modeling and experiment[J]. Nucl. Instrum. Methods Phys. Res. B, 2007, 255: 32 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|