Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (3): 220-228    DOI: 10.11901/1005.3093.2015.643
  本期目录 | 过刊浏览 |
新型磷镁晶须的体外生物相容性和抗菌性能*
赵冰1,2,4,5, 徐大可3, 孙子晴3, 任伊宾3, 战德松1,2,4,5(), 肖克沈3, 杨柯3
1. 中国医科大学附属口腔医学院材料教研室 沈阳 110002
2. 辽宁省口腔医院研究所 沈阳 110002
3. 中国科学院金属研究所 沈阳 110016
4. 辽宁省口腔疾病重点实验室 沈阳 110002
5. 辽宁省口腔疾病转化医学研究中心 沈阳 110002
In Vitro Biocompatibility and Antibacterial Property of a Novel Magnesium Phosphate Whisker
ZHAO Bing1,2,4,5, XU Dake3, SUN Ziqing3, REN Yibin3, ZHAN Desong1,2,4,5,**(), XIAO Keshen3,**, YANG Ke3
1. Department of Dental Material, School of Stomatology, China Medical University, Shenyang 110002, China
2. Liaoning Institute of Dental Research, Shenyang 110002, China
3. Institute of Metal Research, Chinese Academic of Sciences, Shenyang 110016, China
4. Liaoning Province Oral Diseases Key Laboratory, Shenyang 110002, China
5. Liaoning Province Oral Diseases Translation Medcicne Research Center, Shenyang 110002, China;
引用本文:

赵冰, 徐大可, 孙子晴, 任伊宾, 战德松, 肖克沈, 杨柯. 新型磷镁晶须的体外生物相容性和抗菌性能*[J]. 材料研究学报, 2016, 30(3): 220-228.
Bing ZHAO, Dake XU, Ziqing SUN, Yibin REN, Desong ZHAN, Keshen XIAO, Ke YANG. In Vitro Biocompatibility and Antibacterial Property of a Novel Magnesium Phosphate Whisker[J]. Chinese Journal of Materials Research, 2016, 30(3): 220-228.

全文: PDF(3381 KB)   HTML
摘要: 

采用RTCA法和Annexin-V/PI双标记法研究了一种新型磷镁晶须的体外生物相容性, 采用共培养法研究了抗菌性能.结果表明, 磷镁晶须材料的生物相容性随着晶须浓度的提高而降低, 晶须浓度小于等于500 μg/mL 时具有较好的体外生物相容性.当晶须浓度为50 μg/mL 和 200 μg/mL时, 对成骨细胞几乎没有影响.磷镁晶须的杀菌效能随着浓度的提高而提高, 浓度为500 μg/mL时对大肠杆菌和金黄色葡萄球菌的杀菌率分别达到96.84%和99.93%, 表现出优异的抗菌性能.

关键词 无机非金属材料磷镁晶须生物相容性抗菌性能细胞凋亡RTCA    
Abstract

The in vitro biocompatibility of a novel magnesium phosphate whisker (M-PW) was evaluated by real-time cellular analysis (RTCA) and Annexin-V/PI double marking methods, and its antibacterial property was evaluated by co-culture method. Results show that the in vitro biocompatibility of the M-PW decreased with the increase of M-PW in the suspensions. It possessed excellent in vitro biocompatibility for the suspensions containing 500 μg/mL or lower amount of the M-PW. It had no toxic effect on osteoblast cells for the suspension with 50 and 200 μg/mL of M-PW respectively. The antibacterial efficacy of the suspensions increased with the increasing amount of M-PW. The antibacterial efficacy against Escherichia coli and Staphylococcus aureus achieved 96.84% and 99.93% respectively for the suspension with 500 μg/mL of M-PW, demonstrating that the novel phosphorous-magnesium whisker possesses excellent antibacterial property.

Key wordsinorganic non-metallic materials    magnesium phosphate whisker    biocompatibility    antibacterial property    apoptosis    RTCA
收稿日期: 2015-11-17     
ZTFLH:  TB321  
基金资助:* 沈阳市科技计划F16-206-9-14资助项目
作者简介: 战德松, 教授
图1  磷镁晶须的扫描电镜照片
Groups (μg/mL) pH
50 7.50±0.18
200 7.95±0.17
500 8.03±0.23
1000 8.15±0.14
Blank 7.44±0.19
表1  加入MC3T3-E1细胞前各α-MEM晶须液组和空白对照组的pH值 (n=5)
图2  4组不同浓度的磷镁晶须和空白组对MC3T3-E1细胞生长影响的实时细胞分析
Groups (μg/mL) 24 h 48 h 72 h 96 h 120 h
50 80.65% 84.21% 85.33% 93.75% 102.18%
200 84.67% 83.37% 82.20% 92.09% 98.32%
500 71.70% 91.73% 89.56% 84.97% 83.31%
1000 36.91% 42.18% 56.38% 64.02% 68.43%
表2  MC3T3-E1细胞在4组浓度的磷镁晶须作用下的细胞相对增值率
Groups (μg/mL) 24 h 48 h 72 h 96 h 120 h
50 1 1 1 1 0
200 1 1 1 1 1
500 2 1 1 1 1
1000 3 3 3 2 2
表3  4组不同浓度的磷镁晶须对MC3T3-E1细胞毒性等级
图3  用Annexin V/PI 流式细胞仪分析检测的48 h MC3T3-E1细胞凋亡
Groups
(μg/mL)
Cell apoptosis rate P
50 3.59±0.51 0.315*
200 3.62±0.60 0.286*
500 4.05±0.81 0.070*
1000 9.69±0.48 0.000*
Blank 3.08±0.29
表4  各组细胞培养48 h后流式细胞仪检测的凋亡率
Group
(μg/mL)
E.coli S.aureus
pH Sterilizing rate pH Sterilizing rate
50 8.86±0.14 82.78% 9.37±0.13 80.13%
200 9.08±0.10 86.76% 9.62±0.09 96.53%
500 9.23±0.17 96.84% 9.86±0.12 99.93%
1000 9.57±0.19 99.96% 10.23±0.25 99.99%
Blank 7.19±0.19 7.38±0.15
表5  4组浓度的磷镁晶须对大肠杆菌和金黄色葡萄球菌的杀菌率(n=5)
图4  各组磷镁晶须对大肠杆菌和金黄色葡萄球菌作用效果的照片
图5  磷镁晶须杀菌过程的示意图
1 G. Y. Liu, S. Tang, D. Li, J. Hu, Self-adjustment of calcium phosphate coating on micro-arc oxidized magnesium and its influence on the corrosion behaviour in simulated body fluids, Corros. Sci., 79(3), 206(2014)
2 G. L. Converse, Y. Weimin, R. K. Roeder, Processing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone, Biomaterials, 28(6), 927(2007)
3 H. H. K.Xua, J. B. Quinn, D. T. Smith, J. M. Antonucci, G. E. Schumacher, F. C. Eichmiller, Dental resin composites containing silica-fused whiskers effects of whisker-to-silica ration on fracture toughness and indentation properties, Biomaterials, 23(3), 735(2002)
4 M. B. Nair, J. D. Kretlow, A. G. Mikos, F. K. Kasper, Infection and tissue engineering in segmental bone defects-a mini review, Curr. Opin. Biotechnol., 22(5), 721(2011)
5 T. J. Ryan, Infection following soft tissue injury: its role in wound healing, Curr. Opin. Infect. Dis., 20(2), 124(2007)
6 E. M. Hetrick, M. H. Schoenfisch, Reducing implant-related infections: active release strategies, Chem. Soc. Rev., 35(9), 780(2006)
7 M. Braddock, P. Houston, C. Campbell, P. Ashcroft, Born again bone: Tissue engineering for bone repair, News in Physiology Sciences, 16(5), 208(2001)
8 H. Hu, G. Xu, Q. Zan, J. Liu, R. Liu, Z. Shen, X. Ye, In situ formation of nano-hydroxyapatite whisker reinfoced porous β-TCP scaffolds, Microelectronic Engineering, 98, 566(2012)
9 R. J. Kane, H. E.Weiss-Bilka, M. J. Meagher, Y. Liu, J. A. Gargac, G. L. Niebur, D. R. Wagner, R. K. Roeder, Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties, Acta Biomaterialia, 17(6), 16(2015)
10 F. A. Müller, U. Gbureck, T. Kasuga, Y. Mizutani, J. E. Barralet, U. Lohbauer, Whisker-reinforced calcium phosphate cements, J. Am. Ceram. Soc., 90(11), 3694(2007)
11 S. Bose, A.Banerjee, S. Dasgupta, A. Bandyopadhyay, Synthesis, processing, mechanical, and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites, J. Am. Ceram. Soc., 92(2), 323(2009)
12 SHI Lei, SONG Aiyang, GONG Haihuan, FENG Dan, JIN Jie, ZHU Song, Chinese Journal of Practical Stomatology, 8(3), 180(2015)
12 (石磊, 宋艾阳, 宫海环, 冯丹, 金杰, 朱松, 纳米复合树脂研究进展, 中国实用口腔科杂志, 8(3), 180(2015))
13 F. Liu, B. Sun, X. Jiang, S. S. Aldeyab, Q. Zhang, M. Zhu, Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite, Dent. Mater., 30(12), 1358(2014)
14 WANG Rong, ZHANG Wenyun, JIA Anqi, SUN Linhui, Effects of different kinds and usage amounts of whisker fillers on mechanical properties of resin composite, Journal of Oral Science Research, 23(4), 365(2007)
14 (王蓉, 张文云, 贾安, 孙林辉, 不同晶须及晶须用量对复合树脂力学性能的影响, 口腔医学研究, 23(4), 365(2007))
15 NIU Lina, CHEN Jihua, FANG Ming, YANG Jucai, JIAO Kai, Effects of tetrapod-like zinc oxide whiskers incorporation on antibacterial activity of composite resin, Chin. J. Stomatol., 44(4), 240(2009)
15 (牛丽娜, 陈吉华, 方明, 杨聚才, 焦凯, 四针状氧化锌晶须对复合树脂抗菌性能的影响, 中华口腔医学杂志, 44(4), 240(2009))
16 S. N. Garcia, L Gutierrez, A McNulty, Real-time cellular analysis as a novel approach for in vitro cytotoxicity testing of medical device extracts, J. Biomed. Mater., 101(7), 2097(2013)
17 J. Xia, C. Yang, D. Xu, D. Sun, L. Nan, Z. Sun, Q. Li, T. Gu, K. Yang, Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm, Biofouling, 31(6), 481(2015)
18 LI Wu, JIN Zhiliang, ZHANG Zhihong, Application and synthesis of inorganic whisker materials, Progress in Chemistry, 15(4), 264(2003)
18 (李武, 靳治良, 张志宏, 无机晶须材料的合成与应用, 化学进展, 15(4), 264(2003))
19 XU Zhaoyu, Research progress of whisker and its application, Technology & Development of Chemical Industry, 34(2), 11(2005)
19 (徐兆瑜, 晶须的研究和应用新进展, 化工技术与开发, 34(2), 11(2005) )
20 C. J. Holmes, D Faict, Peritoneal dialysis solution biocompatibility: Definitions and evaluation strategies, Kidney. Int., 64(88), S50(2003)
21 N. Ke, X. Wang, X. Xu, Y. A. Abassi, The xCELLigence system for real-time and label-free monitoring of cell viability, Methods Mol. Biol., 740, 33(2011)
22 K. Solly, X. Wang, X. Xu, B. Strulovici, W Zheng,Application of real- time cell electronic sensing (RT-CES) technology to cell-based assays, Assay Drug Dev. Technol., 2(4), 363(2004)
23 A. Konjhodzic, S. Jakupovic, L. Hasic-Brankovic, A.Vukovic, Evaluation of Biocompatibility of Root Canal Sealers on L929 Fibroblasts with Multiscan EX Spectrophotometer, Acta Informatica Medica, 23(3), 135(2015)
24 J. Gu, R. Sun, S. Shen, Z. Yu, The influence of TLR4 agonist lipopolysaccharides on hepatocellular carcinoma cells and the feasibility of its application in treating liver cancer, Onco Targets and Therapy, 8, 2215(2015)
25 ZHAO Xin, CAO Yang, YIN Zhun, ZHANG Guangping, REN Yibin, ZHAN Desong, In vitro biocompatibility of Co-Cr alloys with different content of copper, Chinese Journal of Materials Rearch, 29(7), 628(2015)
25 (赵昕, 曹阳, 印准, 张光平, 任伊宾, 战德松, 不同铜含量钴铬合金的体外生物相容性, 材料研究学报, 29(7), 628(2015))
26 J. Z. Xing, L. Zhu, J. A. Jackson, S. Gabos, X. J. Sun, X. B. Wang, X. Xu, Dynamic monitoring of cytotoxicity on microelectronic sensors, Chem. Res. Toxicol., 18(2), 154(2005)
27 J. J. Quereda, L. Martínez-Alarcón, L. Mendoça, M. J. J. M. Majado, Herrero-Medrano, F.J. Pallarés, A. Ríos, P. Ramírez, A. Muñoz, G. Ramis, Validation of xCELLigence real-time cell analyzer to assess compatibility in xenotransplantation with pig-to-baboon model, Trans- plant Proc., 42(8), 3239(2010)
28 J. T. Irelan, M. J. Wu, J. Morgan, K. Ning, B. Xi, X. Wang, X. Xu, Y. A. Abasi, Rapid and quantitative assessment of cell quality, identity, and functionality for cell-based assays using real-time cellular analysis, J. Biomol. Screen., 16(3), 313(2011)
29 DA. Robinson, RW. Griffith, D. Shechtman, RB. Evans, MG. Conzemius, In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, Acta Biomater, 6(5), 1869(2010)
30 B. S. Kim, J. S. Kim, Y. M. Park, B. Y. Choi, J. Lee, Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell, Materials Science and Enginerring: C, 33(3), 1554(2013)
31 G. Wang, J. Li, W. Zhang, L. Xu, H. Pan, J. Wen, Q. Wu, W. She, T. Jiao, X. Liu, X. Jiang, Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function, Int. J. Nanomedicine., 9(1), 2387(2014)
32 Y. T. Sul, C. Johansson, A. Wennerberg, L. R. Cho, B. S. Chang, T. Albrektsson, Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure, Int. J. Oral Maxillofac. Implants, 20(3), 349(2005)
33 WANG Jian, MA Xiangyu, FENG Yafei, MA Tiancheng, LEI Wei, WANG Lin, Promotive effect of magnesium ions on viability and differentiation of osteoblasts and underlying mechanism, Progress in Modern Biomedicine, 15(15), 2836(2015)
33 (王健, 马翔宇, 冯亚非, 马田成, 雷伟, 王林, 镁离子对成骨细胞活力和分化的促进作用及其机制研究, 现代生物医学进展, 15(15), 2836(2015))
34 YUAN Guangyin, ZHANG Xiaobo, NIU Jialin, TAO Hairong, CHEN Daoyun, HE Yaohua, JIANG Yao, DING Wenjiang, Research progress of new type of degradable biomedical magnesium alloys JDBM, The Chinese Journal of Nonferrous Metals, 21(10), 2476(2011)
34 (袁广银, 章晓波, 牛佳林, 陶海荣, 陈道运, 何耀华, 蒋垚, 丁文江, 新型可降解生物医用镁合金JDBM的研究进展, 中国有色金属学报, 21(10), 2476(2011))
35 YUAN Guangyin, ZHANG Jia, DING Wenjiang, Research Progress of Mg-based alloys as degradable biomedical materials, Materials China, 30(2), 44(2011)
35 (袁广银, 张佳, 丁文江, 可降解医用镁基生物材料的研究进展, 中国材料进展, 30(2), 44(2011))
36 LÜ Yiming, HAN Pei, JI Weiping, CHAI Yimin, Effects of concentrations of magnesium ions on behavior of fibroblasts and osteoblasts, Chin. J. Orthop. Trauma., 15(12), 1065(2013)
36 (吕一鸣, 韩培, 嵇伟平, 柴益民, 不同浓度镁离子对成纤维细胞和成骨细胞影响的体外试验研究, 中华创伤骨科杂志, 15(12), 1065(2013))
37 K. Mansfield, R. Rajpurohit, I. M. Shapiro, Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes, Cell Physiol., 179(3), 276(1999)
38 Z. Meleti, I. M. Shapiro, C. S. Adams, Inorganic phosphate induces apoptosis of osteoblast-like cells in culture, Bone, 27(3), 359(2000)
39 J. Rundegren, T. Sjodin, L. Petersson, E. Hansson, Jonsson, Delmopinol interactions with cell walls of gram-negative and gram-positive oral bacteria, Oral Microbiology & Immunology, 10(2), 102(1995)
40 LI Xiangyang, SHAO Weihua, DIAO Enjie, ZHANG Honglin, Inhibition study on E. coli by temperature, pH and natural drug with microcalorimetric method, Food Science, 28(06), 252(2007)
40 (李向阳, 邵卫华, 刁恩杰, 张洪林, 温度,pH,药物对大肠杆菌抑制作用的量热法研究, 食品科学, 28(06), 252(2007))
41 P. Stoor, E. Soderling, J. I. Salonen, Antibacterial effects of a bioactive glass paste on oral microorganisms, Acta Odontol. Scand., 56(3), 161(1998)
42 I. Allan, H. Newman, M. Wilson, Antibacterial activity of particulate bioglass against supra- and subgingival bacteria, Biomaterials, 22(12), 1683(2001)
43 S. Hu, J. Chang, M. Liu, C. Ning, Study on antibacterial effect of 45S5 Bioglass, J. Mater. Sci. Mater. Med., 20(1), 281(2009)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.