Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (3): 229-234    DOI: 10.11901/1005.3093.2015.020
  本期目录 | 过刊浏览 |
碳纤维/氧化石墨烯多尺度增强体的制备与表征
赵永华1, 马兆昆1(), 宋怀河1, 陈铭1, 周正刚2
1. 北京化工大学 化工资源有效利用国家重点实验室 北京 100029
2. 中航工业复合材料技术中心 北京 101300
Synthesis and Characterization of Carbon Fibers Multi-scale Reinforcement with Grafted Graphene Oxide
ZHAO Yonghua1, MA Zhaokun1,*(), SONG Huaihe1, CHEN Ming1, ZHOU Zhenggang2
引用本文:

赵永华, 马兆昆, 宋怀河, 陈铭, 周正刚. 碳纤维/氧化石墨烯多尺度增强体的制备与表征[J]. 材料研究学报, 2016, 30(3): 229-234.
Yonghua ZHAO, Zhaokun MA, Huaihe SONG, Ming CHEN, Zhenggang ZHOU. Synthesis and Characterization of Carbon Fibers Multi-scale Reinforcement with Grafted Graphene Oxide[J]. Chinese Journal of Materials Research, 2016, 30(3): 229-234.

全文: PDF(2216 KB)   HTML
摘要: 

利用改进Hummers法制备氧化石墨烯, 通过"grafting to"法接枝到用硅烷偶联剂Kh550处理的碳纤维表面, 从而获得碳纤维/氧化石墨烯多尺度增强体.通过扫描电镜(SEM),透射电镜(TEM),拉曼光谱(Raman),X射线光电子能谱(XPS)和红外光谱(IR)对获得的多尺度碳纤维的形貌,结构和表面官能团进行了表征, 并利用纤维电子强力仪和电阻率仪研究了接枝前后碳纤维力学性能和传导性能的变化.结果表明, 氧化石墨烯主要接枝在碳纤维表面的沟槽和缺陷处, 碳纤维表面不饱和碳原子数目增加, 微晶尺寸减小, 接枝后碳纤维的拉伸强度提高了9.8%, 断裂伸长率提高了13.1%, 而其电导率降低了11.6%.

关键词 无机非金属材料碳纤维氧化石墨烯硅烷偶联剂接枝    
Abstract

A kind of carbon fiber / graphene oxide multi-scale reinforcement was prepared by "grafting to" method, with raw materials of the graphene oxide fabricated by a modified Hummers method and the carbon fiber treated with silane coupling agent Kh550.The prepared product was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), Ramanspectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR). The mechanical properties and the conductivity of the reinforced carbon fiber were measured by electronic tensile strength tester for fiber and resistivity instrument. The results showthatafter grafting, the graphene oxide can be grafted onto grooves and defects of the carbon fiber surface; the number of unsaturated carbon atom increases andthe size of microcrystalline decreases on the surface of the carbon fiber; andthe tensile strength andthe fractureelongation of single carbon fiber may be increased up to 9.8% and 13.1%, respectively andhowever the conductivity of carbon fiber is reduced by 11.6%.

Key wordsinorganic non-metallic materials    carbon fiber    graphene oxide    silane coupling agent    grafting
收稿日期: 2015-01-13     
ZTFLH:  TB321  
作者简介: 马兆昆
图1  碳纤维/氧化石墨烯多尺度增强体的表面结构特征
图2  碳纤维接枝前后的XPS分析
图3  碳纤维接枝前后的C1s分析
Fiber C/% O/% N/% Si/%
CF 76.5 16.13 1.90 4.46
CF+GO 69.24 17.17 4.47 8.5
表1  T300-6k碳纤维接枝前后的表面元素分析(质量分数)
图4  碳纤维/氧化石墨烯多尺度增强体的红外光谱
图5  碳纤维/氧化石墨烯多尺度增强体的反应历程
图6  碳纤维/氧化石墨烯多尺度增强体的拉曼光谱
Samples D band G band ID/IG
P (cm-1) ID FWHM P (cm-1) IG FWHM
a 1354.4 47.3 271.9 1589.4 43.1 128.6 1.096
b 1326.4 228.6 161.5 1604.9 192.1 98.9 1.190
c 1333.0 127.7 125.3 1603.3 103.0 75.8 1.240
表2  碳纤维/氧化石墨烯多尺度增强体拉曼光谱的D峰和G峰的各参数
Samples Graphene oxide
concentration (mg/ml)
Tensile strength
(GPa)
Elongation at
break (%)
Electrical
conductivity (Ω-1cm-1)
a 0 3.72 3.07 664.9
b 1 3.50 3.19 603.6
c 0.5 3.82 3.53 587.8
d 0.25 4.09 3.47 628
e 0.125 3.86 3.60 600.1
f 0.0625 3.85 3.25 613.2
表3  碳纤维/氧化石墨烯多尺度增强体的力学性能
1 HAO Yuankai, XIAO Jiayu,High performance composite materials science ( Beijing, Chemical Industry Press, 2004)
1 (郝元恺, 肖加余, 高性能复合材料学 (北京, 化学工业出版社, 2004))
2 HE Fu, Carbon fiber and its application technology (Beijing: Chemical Industry Press, 2004)
2 (贺福, 碳纤维及其应用技术 (北京, 化学工业出版, 2004))
3 De. Riccardis, M. F, Carbone. D, Dikonimos, M. T. Anchorage of carbon nanotubes grown on carbon fibres, Carbon, 44, 671(2006)
4 Sharma S P, Lakkad S C, Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites, Surface and Coatings Technology, 205, 350(2010)
5 Novoselov K S, Geim A K, Morozov S V, Electric field effect in atomically thin carbon films, Science, 306, 666(2004)
6 WANG Xuefei, ZHANG Yonggang, CHEN Yousi, QIAN Xin, JIANG Chi, SONG Chen, YANG Jianhang, Research progress of carbon fiber multi-scale reinforcement body , With the application of high-tech fibers, 38(5), 40(2013)
6 (王雪飞, 张永刚, 陈友汜, 钱鑫, 江驰, 宋晨, 杨建行, 碳纤维多尺度增强体的研究进展, 高科技纤维与应用, 38(5), 40(2013))
7 Stankovich S, Piner R D, Nguyen S T, Ruoff R S, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon, 44, 3342(2006)
8 LIU Xiuying, SONG ying, LI Cunmei, WANG Fuping, Carbon fiber grafted graphene oxide new enhanced synthesis and characterization of body system, Chinese Journal of Inorganic Chemistry, 27(11), 2128(2011)
8 (刘秀影, 宋英, 李存梅, 王福平, 氧化石墨烯接枝碳纤维新型增强体的制备与表征, 无机化学学报, 27(11), 2128(2011))
9 Li Yibin, Peng Qingyu, He Xiaodong, Hu Pingan, Wang Chao, Shang Yuanyuan, Wang Rongguo, Jiao Weicheng, Lv Hongzhen, Synthesis and characterization of a new hierarchical reinforcement bychemically grafting graphene oxide onto carbon fibers, Journal of Materials Chemistry, 22, 18748(2012)
10 Huang ShY, Wu G P, Chen Ch M, Yu Y, Zhang ShCh, Lu Ch X, Electrophoretic deposition and thermal annealing of a grapheme oxide thin on carbon fiber surfaces, Carbon, 52, 605(2013)
11 Fan X Y, Zh X Q, Yan Ch, Li Hongzhou, Interfacial microstructure and propertiesof carbon fiber composites modified with graphene oxide, Applied Materials & Interfaces, 4, 1543(2012)
12 Ferrari A C, Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, 61(20), 14095(2000)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 戚云超, 方国东, 周振功, 梁军. 不同针刺工艺的针刺复合材料面内拉伸强度分析[J]. 材料研究学报, 2023, 37(1): 21-28.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.