Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (3): 209-219    DOI: 10.11901/1005.3093.2015.433
  本期目录 | 过刊浏览 |
不同偶联剂对空心玻璃微球/酚醛复合泡沫塑料界面性能的影响
汪波, 黄赤, 黄志雄(), 张景洁
武汉理工大学材料科学与工程学院 特种功能材料技术教育部重点实验室 武汉 430070
Effect of Different Coupling Agents on Interfacial Properties of Hollow Glass Microsphere/Phenolic Syntactic Foams
WANG Bo, HUANG Chi, HUANG Zhixiong*(), ZHANG Jingjie
(Key Laboratory of Advanced Technology for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China)
引用本文:

汪波, 黄赤, 黄志雄, 张景洁. 不同偶联剂对空心玻璃微球/酚醛复合泡沫塑料界面性能的影响[J]. 材料研究学报, 2016, 30(3): 209-219.
Bo WANG, Chi HUANG, Zhixiong HUANG, Jingjie ZHANG. Effect of Different Coupling Agents on Interfacial Properties of Hollow Glass Microsphere/Phenolic Syntactic Foams[J]. Chinese Journal of Materials Research, 2016, 30(3): 209-219.

全文: PDF(9695 KB)   HTML
摘要: 

以不同种类的偶联剂对空心玻璃微球表面改性, 改性后的微球填充酚醛树脂制备了酚醛复合泡沫塑料.研究了空心微球改性前后的表面性能和酚醛复合泡沫塑料的弯曲强度,断裂韧性以及动态力学性能的变化.结果表明: 经过偶联剂处理后的空心微球, 降低了空心微球之间的团聚, 增加了表面疏水性, 改善了与基体间的相容性和界面性能, 提高了复合材料的各项性能.不同种类偶联剂中, 钛酸酯偶联剂以物理缠结的方式同酚醛基体聚合物链连接, 硅氧烷偶联剂除部分与甲阶酚醛中的羟甲基有化学键合作用, 大部分仍以物理缠结为主, 戊二醛和硅氧烷协同改性通过形成缩醛结构将微球与基体连接起来, 因此, 在酚醛基复合材料中以戊二醛和硅氧烷偶联剂协同改性的效果最为明显.

关键词 复合材料界面性能表面改性空心玻璃微球戊二醛    
Abstract

Hollow glass microspheres (HGM) are modified with different types of coupling agents.Phenolic syntactic foams are prepared by introducing the modified hollow glass microspheres into phenolic matrix. The interaction between HGM and phenolic matrix, as well as the flexural strength, fracture toughness, and dynamic mechanical properties of phenolic syntactic foams were then studied. Results showed that the graft of coupling agent onto the surface of HGM could reduce the agglomeration of HGM in the phenolic matrix, enhance the compatibility of HGM with phenolic matrix and the hydrophobicityof HGM, resulting in a good comprehensive property of phenolic syntactic foams. Among various types of coupling agents of γ-aminopropyltriethoxysilane(APTES), di(dioctylpyrophosphato) ethylene titanate(NDZ-311), and glutaraldehyde(GA), the long chains on the surface of NDZ311grafted HGM may interact with polymer chains of PF matrix through Vander Waals forces and physical entanglement of molecular chains; For the case of APTES-HGM, when the particles are immersed in resol phenolic, a few hydroxymethylgroup could react with amino group to form chemical bonding, the physicalentanglement of molecular chains dominates the linkage between filler and matrix; In syntactic foams containing GA modified HGM, the aldehyde group could react with phenolic resinmonomers and form acetal linkage with resin matrix.

Key wordscomposite    interfacial properties    surface modification    hollow glass microsphere    glutaraldehyde
收稿日期: 2015-08-01     
ZTFLH:  TB332  
作者简介: 黄志雄, 教授
图1  空心微球表面改性原理图
图2  不同空心微球的FT-IR光谱
图3  不同空心微球的接触角
图4  不同空心微球的表面形貌SEM像
图5  复合泡沫断裂韧性测试试样断面SEM像
图6  复合泡沫的弯曲应力-应变曲线,弯曲强度以及断裂韧性
图7  复合泡沫弯曲试样断面SEM像 2.3 不同表面处理的微球/酚醛复合泡沫的动态力学性能
图8  复合泡沫储能模量和损耗因子随温度的变化
图9  改性微球与酚醛基体相互作用示意图
1 N. Tsubokawa, A.Kogure, Y.Sone, Grafting of polyesters from ultrafine inorganic particles: copolymerization of epoxides with cyclicacid anhydrides initiated by COOK groups introduced onto thesurface, Journal of Polymer Science Part A Polymer Chemistry, 28, 1923(1995)
2 C. B. Murray, D Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperseCdE(E=sulfur, selenium, tellurium)semiconductor nanocrystallites, Journal of the American ChemicalSociety, 115, 8706(1993)
3 N. Greenham, X. Peng, A. P. Alivisatos, Charge seperation and transport inconjugated-polymer/semiconductor-nanocrystal composites studied byphotoluminescence quenching and photoconductivity, Physical Review B, 54, 17628(1996)
4 S. Kango, S.Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review, Progress in Polymer Science, 38(8), 1232(2013)
5 M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R Walter, K Friedrich, Structure-property relationships ofirradiation grafted nanoinorganic particle filled polypropylene composites, Polymer, 42(1), 167(2001)
6 G. Kickelbick, Concepts for the incorporation ofinorganic buildingblocks into organic polymers on a nanoscale, Progress in PolymerScience, 28(1), 83(2003)
7 M. Sabzi, S. M. Mirabedini, J. Zohuriaan-Mehr, M. Atai, Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on theproperties of polyurethane composite coating, Progress in Organic Coatings, 65(2), 222(2003)
8 C. X. Wang, H. Y. Mao, C. Wang, S. H. Fu, Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent, Industrial and Engineering Chemistry Research, 50(21), 11930(2011)
9 M. J. Owen.Coupling agents: chemical bonding at interfaces. Adhesion Science and Engineering, 2, 403(2002)
10 Y. K. Guo, M. Y. Wang, H. Q. Zhang, The surface modification of nanosilica, preparation of nanosilica/acrylic coreshell composite latex, and its application in toughening PVC matrix, Journal of Applied Polymer Science, 107, 2671(2008)
11 H. Gun-Young, J. K. Soo, Effect of coupling agents on thermal, flow, and adhesion properties of epoxy/silica compounds for capillary underfill applications, Powder Technology, 230, 145(2012)
12 T. L. Truong, A. Larsen, B. Holme, S. Diplas, F. K. Hansen, J. Roots, S, Jorgensen, Dispersibility of silane-functionalized alumina nanoparticles in syndiotactic polypropylene, Surface and Interface Analysis, 42(6-7), 1046(2010)
13 X. Shen, S.Gui, B. Lin, Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents, Rare Metals, 25(SI), 426(2006)
14 S. R. Ma, L. Y. Shi, X Feng, Graft modification of ZnO nanoparticles with silane coupling agent KH570 in mixed solvent, Journal of Shanghai University, 12, 278(2005)
15 I. Motoyuki, S. Nobuhiro. L.Wuled, K. Hidehiro, Surface modification of BaTiO3 particles by silane coupling agents in differentsolvents and their effect on dielectric properties of BaTiO3/epoxy composites, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352(1-3), 88(2009)
16 L. Zhang, M.Zhong, H. L.Ge, Surface modification of zinc oxide nanorods for potential applications in organic materials, Applied Surface Science, 258(4), 1551(2011)
17 Z. F. Tang, G.J. Cheng, Y. S. Chen, X. H. Yu, H. L. Wang, Characteristics evaluation of calcium carbonate particles modified by surface functionalization, Advanced Powder Technology, 25(5), 1618(2014)
18 N. S. K.Naga, S. Minashree, N. Lana, K. Kamaljit, M. Sushanta, Optimization and characterization of biomolecule immobilization on silicon substrates using(3-aminopropyl) triethoxysilane(APTES) and glutaraldehyde linker, Applied Surface Science, 305, 522(2014)
19 L. Zhang, J. Ma, Effect of coupling agent on mechanical properties of hollow carbonmicrosphere/phenolic resin syntactic foam, Composites Science and Technology, 70(8), 1265(2010)
20 M. H. Choi, B. H. Jeon, I. J. Chung, The effect of coupling agent on electrical and mechanical properties ofcarbon fiber/phenolic resin composites, Polymer, 41(8), 3243(2000)
21 R. Al-Oweini, H. El-Rassy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 andSi(OR)3 precursors, Journal of Molecular Structure, 919, 140(2009)
22 R. K.Goyal, A. S. Kapadia, Study on phenyltrimethoxysilane treated nano-silicafilled high performance poly(etheretherketone) nanocomposites, Composite Part B, 50, 135(2013)
23 T. Theppradit, P. Prasassarakich, S. Poompradub, Surface modification of silica particles and its effects on cure and mechanical properties of the natural rubber composites, Materials Chemistry and Physics, 148(3), 940(2014)
24 F. Touaiti, P. Alam, M. Toivakka, D. W. Bousfield, Polymer chain pinning at interfaces in CaCO3- SBR latex composites, Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 527(9), 2363(2010)
25 S. Kango, S. Kalia, A. Celli, J. Njuguna, Surface modification of inorganicnanoparticles for development of organic-inorganic nanocomposites-a review, Progress in Polymer Science, 38(8), 1232(2013)
26 Z. Y. Yang, Y. J. Tang, J. H. Zhang, Surface modification of CaCO3 nanoparticleswith silane coupling agent for improvement of the interfacial compatibility with styrene-butadiene rubber latex, Chalcogenide Lett., 10(4), 131(2013)
27 N. S. K.Gunda, M. Singh, L. Norman, K.Kaur, S.K. Mitra, Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker, Applied Surface Science, 305, 522(2014)
28 L. Chvátalová, R. Čermák, A. Mráček, O. Grulich, A. Vesel, P. Ponížil, A. Minařík, U. Cvelbar, L. Beníček, P. Sajdl, The effect of plasma treatment on structure and properties of poly(1-butene) surface, European Polymer Journal, 48(4), 866(2012)
29 G. J. Cheng, B. Tong, Z. F. Tang, X. H. Yu, H. L. Wang, G. X. Ding, Surface functionalization of coal powder with different coupling agents for potential applications in organic materials, Applied Surface Science, 313, 954(2014)
30 M. Z.Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, K. Friedrich, Structure-property relationships of irradiation grafted nano inorganic particle filled polypropylene composites, Polymer, 42(1), 167(2001)
31 X. Wang, P. P. Wang, Y. Jiang, Q. Su, J.P. Zheng, Facile surface modification of silica nanoparticles with a combination of noncovalent and covalent methods for composites application, Composites Science and Technology, 104, 1(2014)
32 L. Y. Zhang, J. Ma, Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam, Composites Science and Technology, 70, 1265(2010)
33 S. S. Kelly, T. G.Rials, W. G.Glasser, Relaxation behavior of the amorphous components of wood, Journal of Materials Science, 22, 617(1986)
34 V. C. Shunmugasamy, D. Pinisetty, N. Gupta, Viscoelastic properties of hollow glass particle filled vinyl ester matrix syntactic foams: effect of temperature and loading frequency, Journal of Materials Science, 48(4), 1685(2013)
35 M. S. Islam, S. Hamdan, Z. A. Talib, A. S. Ahmed, M. R. Rahman, Tropical wood polymer nanocomposite(WPNC): The impact of nanoclay on dynamic mechanical thermal properties, Composites Science and Technology, 72, 1995(2012)
36 A. Hazarika, M. Mandal, T. K. Maji, Dynamic mechanical analysis, biodegradability and thermal stability of wood polymer nanocomposites, Composites Part B, 60, 568(2014)
37 B. John, C. P.Reghunadhan Nair, K. N. Ninan, Effect of nanoclay on the mechanical, dynamic mechanical and thermal properties of cyanate ester syntactic foams, Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 527(21-22), 5435(2010)
38 H. Essabir, A. Elkhaoulani, K. Benmoussa, R. Bouhfid, F.Z.Arrakhiz, A. Qaiss, Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites, Materials&Design, 51, 780(2013)
39 M. J. John, R. D. Anandjiwala, Chemical modification of flax reinforced polypropylene composites, Composites Part A, 40(4), 442(2009)
40 N. A. Bakar, C. Y. Chee, L.C. Abdullah, C. T. Ratnam, N. A. Ibrahim,Thermal and dynamic mechanical properties of grafted kenaf filled poly(vinyl chloride)/ethylene vinyl acetate composites, Materials&Design, 65, 204(2015)
41 M. H. Choi, B. H. Jeon, I. J. Chung, The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites, Polymer, 41(9), 3243(2000)
42 L. Y. Zhang, J. Ma, Effect of coupling agent on mechanical properties of hollow carbonmicrosphere/phenolic resin syntactic foam, Composites Science and Technology, 70, 1265(2010)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.