|
|
不同偶联剂对空心玻璃微球/酚醛复合泡沫塑料界面性能的影响 |
汪波, 黄赤, 黄志雄( ), 张景洁 |
武汉理工大学材料科学与工程学院 特种功能材料技术教育部重点实验室 武汉 430070 |
|
Effect of Different Coupling Agents on Interfacial Properties of Hollow Glass Microsphere/Phenolic Syntactic Foams |
WANG Bo, HUANG Chi, HUANG Zhixiong*( ), ZHANG Jingjie |
(Key Laboratory of Advanced Technology for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China) |
引用本文:
汪波, 黄赤, 黄志雄, 张景洁. 不同偶联剂对空心玻璃微球/酚醛复合泡沫塑料界面性能的影响[J]. 材料研究学报, 2016, 30(3): 209-219.
Bo WANG,
Chi HUANG,
Zhixiong HUANG,
Jingjie ZHANG.
Effect of Different Coupling Agents on Interfacial Properties of Hollow Glass Microsphere/Phenolic Syntactic Foams[J]. Chinese Journal of Materials Research, 2016, 30(3): 209-219.
1 |
N. Tsubokawa, A.Kogure, Y.Sone, Grafting of polyesters from ultrafine inorganic particles: copolymerization of epoxides with cyclicacid anhydrides initiated by COOK groups introduced onto thesurface, Journal of Polymer Science Part A Polymer Chemistry, 28, 1923(1995)
|
2 |
C. B. Murray, D Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperseCdE(E=sulfur, selenium, tellurium)semiconductor nanocrystallites, Journal of the American ChemicalSociety, 115, 8706(1993)
|
3 |
N. Greenham, X. Peng, A. P. Alivisatos, Charge seperation and transport inconjugated-polymer/semiconductor-nanocrystal composites studied byphotoluminescence quenching and photoconductivity, Physical Review B, 54, 17628(1996)
|
4 |
S. Kango, S.Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review, Progress in Polymer Science, 38(8), 1232(2013)
|
5 |
M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R Walter, K Friedrich, Structure-property relationships ofirradiation grafted nanoinorganic particle filled polypropylene composites, Polymer, 42(1), 167(2001)
|
6 |
G. Kickelbick, Concepts for the incorporation ofinorganic buildingblocks into organic polymers on a nanoscale, Progress in PolymerScience, 28(1), 83(2003)
|
7 |
M. Sabzi, S. M. Mirabedini, J. Zohuriaan-Mehr, M. Atai, Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on theproperties of polyurethane composite coating, Progress in Organic Coatings, 65(2), 222(2003)
|
8 |
C. X. Wang, H. Y. Mao, C. Wang, S. H. Fu, Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent, Industrial and Engineering Chemistry Research, 50(21), 11930(2011)
|
9 |
M. J. Owen.Coupling agents: chemical bonding at interfaces. Adhesion Science and Engineering, 2, 403(2002)
|
10 |
Y. K. Guo, M. Y. Wang, H. Q. Zhang, The surface modification of nanosilica, preparation of nanosilica/acrylic coreshell composite latex, and its application in toughening PVC matrix, Journal of Applied Polymer Science, 107, 2671(2008)
|
11 |
H. Gun-Young, J. K. Soo, Effect of coupling agents on thermal, flow, and adhesion properties of epoxy/silica compounds for capillary underfill applications, Powder Technology, 230, 145(2012)
|
12 |
T. L. Truong, A. Larsen, B. Holme, S. Diplas, F. K. Hansen, J. Roots, S, Jorgensen, Dispersibility of silane-functionalized alumina nanoparticles in syndiotactic polypropylene, Surface and Interface Analysis, 42(6-7), 1046(2010)
|
13 |
X. Shen, S.Gui, B. Lin, Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents, Rare Metals, 25(SI), 426(2006)
|
14 |
S. R. Ma, L. Y. Shi, X Feng, Graft modification of ZnO nanoparticles with silane coupling agent KH570 in mixed solvent, Journal of Shanghai University, 12, 278(2005)
|
15 |
I. Motoyuki, S. Nobuhiro. L.Wuled, K. Hidehiro, Surface modification of BaTiO3 particles by silane coupling agents in differentsolvents and their effect on dielectric properties of BaTiO3/epoxy composites, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352(1-3), 88(2009)
|
16 |
L. Zhang, M.Zhong, H. L.Ge, Surface modification of zinc oxide nanorods for potential applications in organic materials, Applied Surface Science, 258(4), 1551(2011)
|
17 |
Z. F. Tang, G.J. Cheng, Y. S. Chen, X. H. Yu, H. L. Wang, Characteristics evaluation of calcium carbonate particles modified by surface functionalization, Advanced Powder Technology, 25(5), 1618(2014)
|
18 |
N. S. K.Naga, S. Minashree, N. Lana, K. Kamaljit, M. Sushanta, Optimization and characterization of biomolecule immobilization on silicon substrates using(3-aminopropyl) triethoxysilane(APTES) and glutaraldehyde linker, Applied Surface Science, 305, 522(2014)
|
19 |
L. Zhang, J. Ma, Effect of coupling agent on mechanical properties of hollow carbonmicrosphere/phenolic resin syntactic foam, Composites Science and Technology, 70(8), 1265(2010)
|
20 |
M. H. Choi, B. H. Jeon, I. J. Chung, The effect of coupling agent on electrical and mechanical properties ofcarbon fiber/phenolic resin composites, Polymer, 41(8), 3243(2000)
|
21 |
R. Al-Oweini, H. El-Rassy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 andSi(OR)3 precursors, Journal of Molecular Structure, 919, 140(2009)
|
22 |
R. K.Goyal, A. S. Kapadia, Study on phenyltrimethoxysilane treated nano-silicafilled high performance poly(etheretherketone) nanocomposites, Composite Part B, 50, 135(2013)
|
23 |
T. Theppradit, P. Prasassarakich, S. Poompradub, Surface modification of silica particles and its effects on cure and mechanical properties of the natural rubber composites, Materials Chemistry and Physics, 148(3), 940(2014)
|
24 |
F. Touaiti, P. Alam, M. Toivakka, D. W. Bousfield, Polymer chain pinning at interfaces in CaCO3- SBR latex composites, Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 527(9), 2363(2010)
|
25 |
S. Kango, S. Kalia, A. Celli, J. Njuguna, Surface modification of inorganicnanoparticles for development of organic-inorganic nanocomposites-a review, Progress in Polymer Science, 38(8), 1232(2013)
|
26 |
Z. Y. Yang, Y. J. Tang, J. H. Zhang, Surface modification of CaCO3 nanoparticleswith silane coupling agent for improvement of the interfacial compatibility with styrene-butadiene rubber latex, Chalcogenide Lett., 10(4), 131(2013)
|
27 |
N. S. K.Gunda, M. Singh, L. Norman, K.Kaur, S.K. Mitra, Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker, Applied Surface Science, 305, 522(2014)
|
28 |
L. Chvátalová, R. Čermák, A. Mráček, O. Grulich, A. Vesel, P. Ponížil, A. Minařík, U. Cvelbar, L. Beníček, P. Sajdl, The effect of plasma treatment on structure and properties of poly(1-butene) surface, European Polymer Journal, 48(4), 866(2012)
|
29 |
G. J. Cheng, B. Tong, Z. F. Tang, X. H. Yu, H. L. Wang, G. X. Ding, Surface functionalization of coal powder with different coupling agents for potential applications in organic materials, Applied Surface Science, 313, 954(2014)
|
30 |
M. Z.Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, K. Friedrich, Structure-property relationships of irradiation grafted nano inorganic particle filled polypropylene composites, Polymer, 42(1), 167(2001)
|
31 |
X. Wang, P. P. Wang, Y. Jiang, Q. Su, J.P. Zheng, Facile surface modification of silica nanoparticles with a combination of noncovalent and covalent methods for composites application, Composites Science and Technology, 104, 1(2014)
|
32 |
L. Y. Zhang, J. Ma, Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam, Composites Science and Technology, 70, 1265(2010)
|
33 |
S. S. Kelly, T. G.Rials, W. G.Glasser, Relaxation behavior of the amorphous components of wood, Journal of Materials Science, 22, 617(1986)
|
34 |
V. C. Shunmugasamy, D. Pinisetty, N. Gupta, Viscoelastic properties of hollow glass particle filled vinyl ester matrix syntactic foams: effect of temperature and loading frequency, Journal of Materials Science, 48(4), 1685(2013)
|
35 |
M. S. Islam, S. Hamdan, Z. A. Talib, A. S. Ahmed, M. R. Rahman, Tropical wood polymer nanocomposite(WPNC): The impact of nanoclay on dynamic mechanical thermal properties, Composites Science and Technology, 72, 1995(2012)
|
36 |
A. Hazarika, M. Mandal, T. K. Maji, Dynamic mechanical analysis, biodegradability and thermal stability of wood polymer nanocomposites, Composites Part B, 60, 568(2014)
|
37 |
B. John, C. P.Reghunadhan Nair, K. N. Ninan, Effect of nanoclay on the mechanical, dynamic mechanical and thermal properties of cyanate ester syntactic foams, Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 527(21-22), 5435(2010)
|
38 |
H. Essabir, A. Elkhaoulani, K. Benmoussa, R. Bouhfid, F.Z.Arrakhiz, A. Qaiss, Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites, Materials&Design, 51, 780(2013)
|
39 |
M. J. John, R. D. Anandjiwala, Chemical modification of flax reinforced polypropylene composites, Composites Part A, 40(4), 442(2009)
|
40 |
N. A. Bakar, C. Y. Chee, L.C. Abdullah, C. T. Ratnam, N. A. Ibrahim,Thermal and dynamic mechanical properties of grafted kenaf filled poly(vinyl chloride)/ethylene vinyl acetate composites, Materials&Design, 65, 204(2015)
|
41 |
M. H. Choi, B. H. Jeon, I. J. Chung, The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites, Polymer, 41(9), 3243(2000)
|
42 |
L. Y. Zhang, J. Ma, Effect of coupling agent on mechanical properties of hollow carbonmicrosphere/phenolic resin syntactic foam, Composites Science and Technology, 70, 1265(2010)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|