Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (4): 281-285    DOI: 10.11901/1005.3093.2013.914
  本期目录 | 过刊浏览 |
超疏水材料在液压作用下的润湿行为*
张凯,黄建业,王峰会()
西北工业大学工程力学系 西安 710129
Wetting Behavior of Superhydrophobic Materials under Hydraulic Pressure
Kai ZHANG,Jianye HUANG,Fenghui WANG()
Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710129
引用本文:

张凯,黄建业,王峰会. 超疏水材料在液压作用下的润湿行为*[J]. 材料研究学报, 2014, 28(4): 281-285.
Kai ZHANG, Jianye HUANG, Fenghui WANG. Wetting Behavior of Superhydrophobic Materials under Hydraulic Pressure[J]. Chinese Journal of Materials Research, 2014, 28(4): 281-285.

全文: PDF(2362 KB)   HTML
摘要: 

在超疏水界面光反射的基础上, 用抽真空和压力驱动的方法研究了荷叶、超疏水ZnO阵列在水下的界面润湿行为和微结构中截留气体对其润湿行为的影响。结果表明: 当有气体截留时受所加最大压力和微结构几何形貌的影响, 超疏水界面在加压和减压过程中表现出不同的润湿可逆性; 超疏水材料表面微结构中截留的气体能延迟水的侵入并提高超疏水稳定性; 在特定情况下, 随着外部压力的减小截留气体的膨胀能推动和排出侵入的水并引导反润湿过程。因此, 截留气体有利于超疏水状态的存在。由于三相接触线密度的不同, 纳米结构在压力作用下比微米结构表现出更为优异的疏水稳定性。

关键词 无机非金属材料超疏水润湿去润湿稳定性    
Abstract

Based on the reflection property of water-superhydrophobic material interface, the underwater wetting behavior of natural lotus leaf and superhydrophobic ZnO arrays was investigated by varying the wetting status with vacuum pumping and pressure-driven with special attention on the influence of the entrapped air in microstructures of their surface. The results show that when air was trapped on the surface, the water-superhydrophobic material interface exhibits different wetting reversibility in the course of compressing and decompressing, which may be affected by the maximum pressure exerted and the morphology of the surface microstructure. The entrapped air in the surface microstructures can delay the intrusion of water and enhance the stability of superhydrophobicity. In certain case, with the decrease of external pressure the expansion of the trapped air can even push out the intruded water and lead to the de-wetting process, therewith benefitial to the stability of superhydrophobic state. Due to the difference in density of trip-phase contact line, the microstructure in nano-scale show better hydrophobic stability rather than that of the microstructures in micro-scale under external pressure.

Key wordsinorganic non-metallic materials    superhydrophobicity    wetting    deweting    stability
收稿日期: 2013-12-03     
基金资助:* 国家自然科学基金11372251和西北工业大学研究生种子基金Z2013056资助项目。
图1  ZnO阵列和荷叶试样表面的扫描电镜图
图2  实验测试示意图
图3  荷叶在压力作用下的润湿转变没有空气截留时的压力-反射光光照度曲线; 有空气截留时的压力-反射光光照度曲线; 有气体截留时的润湿变化过程示意图
图4  表面改性后的ZnO阵列在压力作用下的润湿转变没有空气截留时的压力-反射光光照度曲线; 有空气截留时的压力-反射光光照度曲线; 有气体截留时的润湿与反润湿示意图
1 C. Neinhuis, W. Barthlott,Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces, annals of botany, 79(6), 667(1997)
2 Y. Y. Yan, N. Gao, W. Barthlott,Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces, Advances in Colloid and Interface Science, 169(2), 80(2011)
3 WANG Bin,NIAN Jingyan, TIE Lu, ZHANG Yabin, GUO Zhiguang, Theoretical progress in designs of stablesuperhydrophobic surfaces, Acta Physica Sinica, 62(14), 146801(2013)
3 (王 奔, 念敬妍, 铁 璐, 张亚斌, 郭志光, 稳定超疏水性表面的理论进展, 物理学报, 62(14), 146801(2013))
4 Yu Ying,Wang Jiadao, Chen Darong, Study on drag reduction of hydrophobic surface, Lubrication Engineering, 9(2006)
4 (禹 营, 汪家道, 陈大融, 疏水表面的摩擦阻力特性研究, 润滑与密封, 9(2006))
5 HUANG Weibo,Studies on The Preparation of Flexible Spray Polyurea Coating and Its Drag-reducing Properties of Underwater Vehicle, PHD Thesis, Ocean University of China (2007)
5 (黄微波, 水下航行器喷涂聚脲柔性涂层的制备及减阻性能的研究, 博士论文, 中国海洋大学(2007))
6 S. Wang, L. Jiang,Definition of Superhydrophobic States, Advanced Materials, 19(21), 3423(2007)
7 A. B. D. Cassie,Contact Angles, Discussions of the Faraday Society, 3, 11(1948)
8 R. N. Wenzel,Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry, 28(8), 988(1936)
9 B. Bhushan, Y. C. Jung,Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Progress in Materials Science, 56(1), 1(2011)
10 C. W. Extrand,Designing for Optimum Liquid Repellency, Langmuir, 22(4), 1711(2006)
11 B. Emami,Predicting shape and stability of air–water interface on superhydrophobic surfaces with randomly distributed, dissimilar posts, Applied Physics Letters, 98(20), 203106(2011)
12 N. A. Patankar,Consolidation of Hydrophobic Transition Criteria by Using an Approximate Energy Minimization Approach, Langmuir, 26(11), 8941(2010)
13 G. Whyman, E. Bormashenko,How to Make the Cassie Wetting State Stable?, Langmuir, 27(13), 8171(2011)
14 P. Papadopoulos, L. Mammen, X. Deng, D. Vollmer, H. J. Butt,How superhydrophobicity breaks down, PNAS, 110(9), 3254(2013)
15 HUANG Jianye,WANG Fenghui, ZHAO Xiang, ZHANG Kai, Wetting Transition and Stability Testing of Superhydrophobic State, Acta Phys.-chim. Sin., 29(11), 2459(2013)
15 (黄建业, 王峰会, 赵 翔, 张 凯, 超疏水状态的润湿转变与稳定性测试, 物理化学学报, 29(11), 2459(2013))
16 C. W. Extrand,Modeling of Ultralyophobicity: Suspension of Liquid Drops by a Single Asperity, Langmuir, 21(23), 10370(2005)
17 X. Sheng, J. Zhang,Air layer on superhydrophobic surface underwater, Colloids Surf. A., 377(1-3), 374(2011)
18 R. Poetes, K. Holtzmann, K. Franze, U. Steiner,Metastable Underwater Superhydrophobicity, Physical Review Letters, 105, 166104(2010)
19 C. W. Extrand, Repellency of the Lotus Leaf: Resistance to Water Intrusion under Hydrostatic Pressure, Langmuir, 27(11), 6920(2011)
20 N. A. Patankar,Vapor Stabilizing Substrates for Superhydrophobicity and Superslip, Langmuir, 26(11), 8783(2010)
21 ZHANG Yujun, Physical Chemistry, Chemical Industry Press, p.121(2008)
21 (张玉军, 物理化学, 北京: 化学工业出版社, p.121(2008)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 李桥, 牛犇, 张瑞谦, 刘会群, 林国强, 王清. Ta/ZrFe-Cr-Al-Mo-Nb合金温轧板材高温组织稳定性的影响[J]. 材料研究学报, 2023, 37(6): 423-431.
[7] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] 李鹏宇, 刘子童, 亢淑梅, 陈姗姗. 等离子处理对医用镁合金表面聚合物防护涂层的影响[J]. 材料研究学报, 2023, 37(4): 271-280.
[9] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.