Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (4): 274-280    DOI: 10.11901/1005.3093.2013.623
  本期目录 | 过刊浏览 |
0.23C-1.9Mn-1.6Si钢中的残余奥氏体对韧塑性的影响*
任勇强,尚成嘉(),张宏伟,袁胜福,陈二虎
北京科技大学材料科学与工程学院 北京 100083
Effect of Retained Austenite on Toughness and Plasticity of 0.23C-1.9Mn-1.6Si Steel
Yongqiang REN,Chengjia SHANG(),Hongwei ZHANG,Shengfu YUAN,Erhu CHEN
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

任勇强,尚成嘉,张宏伟,袁胜福,陈二虎. 0.23C-1.9Mn-1.6Si钢中的残余奥氏体对韧塑性的影响*[J]. 材料研究学报, 2014, 28(4): 274-280.
Yongqiang REN, Chengjia SHANG, Hongwei ZHANG, Shengfu YUAN, Erhu CHEN. Effect of Retained Austenite on Toughness and Plasticity of 0.23C-1.9Mn-1.6Si Steel[J]. Chinese Journal of Materials Research, 2014, 28(4): 274-280.

全文: PDF(2585 KB)   HTML
摘要: 

采用优化的IQ&P工艺处理成分为0.23C-1.9Mn-1.6Si厚度为6.5 mm的低碳硅锰钢, 制备出由亚温铁素体、马氏体以及残余奥氏体构成、抗拉强度为1000 MPa的多相组织高强钢。用SEM、XRD、拉伸以及示波冲击等手段对其显微组织和力学性能进行表征, 并与同等抗拉强度的IQ&T钢和Q&T钢对比, 研究了钢中残余奥氏体对韧塑性的影响。结果表明, 在室温下IQ&P多相钢具有更高的冲击韧性、更好的延伸性能和强塑积, 综合韧塑性要远优于其它钢种。该钢的性能, 与其多相组织结构有密切的关系。大量弥散分布于铁素体和马氏体框架内的残余奥氏体在形变过程中发生TRIP效应, 显著改善了钢的韧塑性, 从而使其综合力学性能提高。

关键词 金属材料多相组织残余奥氏体冲击韧性均匀延伸率强塑积    
Abstract

The 6.5 mm thick plate of a multiphase steel (0.23C-1.9Mn-1.6Si%) composed of intercritical ferrite, martensite and well-distributed retained austenite was obtained by an optimized IQ&P process. Tensile strength of this kind of multiphase steel is higher than 1000MPa. Microstructure of the steel was characterized by means of SEM and XRD, and its mechanical properties were measured by the tensile and instrumented Charpy impact testing at room temperature. In comparison with the IQ&T steel and Q&T steel, which have the same tensile strength, the IQ&P steel shows much better comprehensive mechanical properties with higher toughness, better elongation and bigger products of tensile strength and total elongation. The reason for this is mainly the multi-phase microstructure of the IQ&P steel. TRIP effect of the retained austenite which occurs during the deformation process can significantly improve the toughness and plasticity of the IQ&P steel, and thus contributed to the improvement of mechanical properties.

Key wordsmetallic materials    multiphase microstructure    retained austenite    impact toughness    uniform elongation    products of tensile strength and total elongation
收稿日期: 2013-08-29     
基金资助:* 国家重点基础研究发展计划2010CB630801资助项目。
图1  采用Thermo-Calc计算出的0.23C-1.9Mn-1.6Si 钢的温度—平衡相比例图
图2  0.23C-1.95Mn-1.62Si钢在900℃奥氏体化30 min后淬火所得的微观组织
Process Heating temperature (t) Quench-finish temperature Partitioning temperature (t) Tempering temperature Final cooling method
IQ&P 760℃ (15 min) 280℃ 350℃(15 min) - Water quenching
IQ&T 760℃ (15 min) 25℃ - 400℃(30 min) Air cooling
Q&T 900℃ (30 min) 25℃ - 450℃(30 min) Air cooling
表1  不同热处理工艺的相关参数(温度及时间)
Process Pm Pf Pa dm df da E1 E2 E3 E2+E3 KV2
(kN) (kN) (kN) (mm) (mm) (mm) (J) (J) (J) (J) (J)
IQ&P 9.3 5.8 1.8 2.3 2.9 5.3 17.4 4.4 12.3 16.6 34
IQ&T 10.2 9.2 1.3 1.5 1.9 5.1 12 3.6 16.5 20 32
Q&T 11.3 10.5 0.8 1.4 1.6 4.3 10.8 1.7 10.4 12.2 23
表2  IQ&P、IQ&T和 Q&T钢的示波冲击数值
图3  IQ&P, IQ&T, Q&T三种不同工艺下钢的微观组织SEM形貌
图4  IQ&P, IQ&T, Q&T三种不同工艺下钢的示波冲击曲线
Property Process Rm(MPa) Rp0.2(MPa) YR Agt(%) A(%) Rm×A (MPa·%)
IQ&P 1010 752 0.74 21 30 30300
IQ&T 1052 743 0.71 9.5 20 21040
Q&T 1028 950 0.92 6.0 16 16448
表3  分别经IQ&P、IQ&T 以及Q&T处理后钢的拉伸性能
图5  IQ&P、IQ&T和Q&T三种钢的瞬时加工硬化指数(ni)-真应变曲线
图6  不同冲击及拉伸形变下IQ&P钢的XRD谱
1 J. Kang, C. Wang, G. D. Wang,Microstructural characteristics and impact fracture behavior of a high-strength low-alloy steel treated by intercritical heat treatment, Materials Science and Engineering A, 553, 96(2012)
2 KANG Yonglin,WANG Bo, Structure and property of TRIP plate and its control process, Journal of iron and steel research, 11(3), 62(1999)
2 (康永林, 王 波, TRIP 钢板的组织、性能与工艺控制, 钢铁研究学报, 11(3), 62(1999))
3 C. Herrera, D. Ponge, D. Raabe,Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Materialia, 42, 1059(2002)
4 Y. Sakuma, O. Matsumura, H. Takechi,Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions, Metallurgical Transactions A, 22(2), 489(1991)
5 B. C. De. Cooman,Structure-properties relationship in TRIP steels containing carbide-free bainite, Current Opinion in Solid State and Materials Science, 8, 285(2004)
6 M. Mukherjee, O. N. Mohanty, S. I. Hashimoto, T. Hojo, K. I. Sugimoto,Strain-induced transformation behaviour of retained austenite and tensile properties of TRIP-aided steels with different matrix microstructure, ISIJ International, 46(2), 316(2006)
7 G. A. Thomas, J. G. Speer, D. K. Matlock,Quenched and Partitioned Microstructures Produced via Gleeble Simulations of Hot-Strip Mill Cooling Practices, Metallurgical and Materials TransactionsA, 42(12), 3652(2011)
8 REN Yongqiang,XIE Zhenjia, SHANG Chengjia, Microstructure regulation and mechanical properties of low-carbon multiphase steels, Journal of university of science and technology Beijing, 35(5), 592(2013)
8 (任勇强, 谢振家, 尚成嘉, 低碳多相钢的组织调控与力学性能, 北京科技大学学报, 35(5), 592(2013))
9 D. V. Edmonds, K. He, F. C. Rizzo, B. C. De. Cooman, D. K. Matlock, J. G. Speer,Quenching and partitioning martensite-a novel steel heat treatment, Materials Science and Engineering A, 438, 25(2006)
10 M. J. Santofimia, L. Zhao, R. Petrov, J. Sietsma,Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon stell, Materials Characterization, 59(12), 1758(2008)
11 M. J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, J. Sietsma,New low carbon Q&P steels containing film-like intercritical ferrite, Materials Science and Engineering A, 527, 6429(2010)
12 M. J. Santofimia, L. Zhao, J. Sietsma,Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization, Metallurgical and Materials Transactions A, 40, 46(2009)
13 J. Chiang, B. Lawrence, J. D. Boyd, A. K. Pilkey,Effect of microstructure on retained austenite stability and work hardening of TRIP steels, Materials Science and Engineering A, 528(13-14), 4516(2011)
14 Y. Sakuma, D. K. Matlock, G. Krauss,Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si-1.5 Pct Mn and 4 Pct Ni: Part I. Transformation, microstructure, and room-temperature mechanical properties, Metallurgical Transactions A, 23, 1221(1992)
15 LIU Dongyu, XU Hong, YANG Kun, BAI Bingzhe, FANG Hongsheng, Effect of bainite/matensite mixed microstructure on the strength and toughness of low carbon alloy steels, 40(8), 882(2004)
15 (刘东雨, 徐 鸿, 杨 昆, 白秉哲, 方鸿生, 贝氏体/马氏体复相组织对低碳合金钢强韧性的影响, 金属学报, 40(8), 882(2004))
16 LIU Dongsheng,CHENG Binggui, LUO Mi, Microstructure and impact fracture behaviour of HAZ of F460 heavy ship plate with high strength and toughness, Acta metallurgica sinica, 47(10), 1233(2011)
16 (刘东升, 程丙贵, 罗 咪, F460高强韧厚船板焊接热影响区的组织和冲击断裂行为, 金属学报, 47(10), 1233(2011))
17 Y. Sakuma, O. Matsumura, O. Akisue,Influence of C Content and Annealing Temperature on Microstructure and Mechanical Properties of Transformed Steel Contained Retained Austenite, ISIJ International, 31(9), 1348(1991)
18 DONG Han,WANG Maoqiu, WENG Yuqing, Performance improvement of steels through M3 structure control, Iron and steel, 45(7), 1(2010)
18 (董 瀚, 王毛球, 翁宇庆, 高性能钢的M3组织调控理论与技术, 钢铁, 45(7), 1(2010))
19 P. Jacques, X. Cornet, P. Harlet, J. Ladriere,Enhancement of the Mechanical Properties of a Low-Carbon, Low-Silicon Steel by Formation of a Multiphased Microstructure Containing Retained Austenite, Metallurgical and Materials Transactions A, 29, 2383(1998)
20 O. Yakubovsky, N. Fonstein, D. Bhattacharya, in Proceedings of international conference on TRIP-adied high strength ferrous alloys, Stress-strain behavior and bake hardening of TRIP and TRIP aided multiphase steels, edited by B. C. De Cooman(Aachen, Wissenschaftsverlag Mainz Gmbh, 2002)p. 263
21 C. Herrera, D. Ponge, D. Raabe,Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Materialia, 59(11), 4653(2011)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.