Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (4): 286-292    DOI: 10.11901/1005.3093.2013.731
  本期目录 | 过刊浏览 |
微波辅助制备乙酰化玉米淀粉的理化性能*
张昊1,2,王建坤1,2,**(),王瑞1,2,董永春1
1. 天津工业大学纺织学院 天津 300387
2. 天津工业大学 先进纺织复合材料教育部重点实验室 天津 300387
Synthesis and Physicochemical Characteristics of Acetylated Corn Starch under Microwave Assistance
Hao ZHANG1,2,Jiankun WANG1,2,**(),Rui WANG1,2,Yongchun DONG1
1. School of Textiles, Tianjin Polytechnic University, Tianjin 300387
2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tianjin Polytechnic University, Tianjin 300387
引用本文:

张昊,王建坤,王瑞,董永春. 微波辅助制备乙酰化玉米淀粉的理化性能*[J]. 材料研究学报, 2014, 28(4): 286-292.
Hao ZHANG, Jiankun WANG, Rui WANG, Yongchun DONG. Synthesis and Physicochemical Characteristics of Acetylated Corn Starch under Microwave Assistance[J]. Chinese Journal of Materials Research, 2014, 28(4): 286-292.

全文: PDF(1542 KB)   HTML
摘要: 

以玉米淀粉(NCS)为原料, 乙酸乙烯酯(VAc)为酰化剂, K2CO3为催化剂, 用微波辅助法制备乙酰化玉米淀粉(ACS), 用红外光谱(FT-IR)、扫描电镜(SEM)和X-射线衍射(XRD)等手段对其表征, 研究了ACS的理化特性, 粘附性能和生物降解性。结果表明, ACS的理化性能比NCS有较大的改善: 其水合能力增强, 溶胀性与糊透明度提高; 特性黏度和表观粘度下降, 流变性能有所改善; 凝沉作用减弱, 抗老化性增强。ACS对涤棉纤维的粘附性提高, 克服了原淀粉对疏水性合成纤维粘附力不足的缺陷。ACS的BOD5/CODcr比值远高于PVA-205。

关键词 有机高分子材料乙酰化玉米淀粉微波辐射理化特性生物降解    
Abstract

Native corn starch (NCS) was acetylated by a microwave-assisted method using vinyl acetate (VAc) as an acetylating agent and potassium carbonate K2CO3 as a catalyst. Acetylated corn starch (ACS) was characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The physicochemical properties, adhesive properties and biodegradability of ACS were systematically investigated. The results show that the physicochemical properties of ACS were improved compared with NCS: the hydration capacity raised, solubility, swelling power and paste clarity increased; the intrinsic viscosity, apparent viscosity decreased, rheological property were improved; the syneresis decreased, anti-retrogradation were enhanced. The adhesion to polyester/cotton fibers of ACS was enhanced, which compensated for the insufficient adhesion to hydrophobic fibers of native starch. BOD5/CODcr value of ACS was outclasses that of PVA-205.

Key wordsorganic polymer materials    acetylated corn starch    microwave irradiation    physicochemical properties    biodegradation
收稿日期: 2013-10-03     
基金资助:* 国家自然科学基金 20773093和天津市高等学校科技发展基金ZD200720资助项目。
图1  原玉米淀粉与乙酰化玉米淀粉的红外谱图
图2  原玉米淀粉与乙酰化玉米淀粉的SEM像
图3  原玉米淀粉与乙酰化玉米淀粉的XRD图谱
AGU:VAc/mol:mol Acetylcontent/% DS Intrinsic viscosity/mLg-1 Apparent viscosity/MPas
NCS 154.95 138.33
ACS#1 12:1 1.28 0.049 119.53 42.67
ACS#2 8:1 2.01 0.077 122.09 50.33
ACS#3 6:1 2.48 0.096 123.46 53.67
ACS#4 4:1 3.09 0.120 126.49 64.00
ACS#5 3:1 3.36 0.131 127.95 68.33
表 1  原玉米淀粉和乙酰化玉米淀粉的特性粘度和表观粘度
NS ACS#1 ACS#2 ACS#3 ACS#4 ACS#5
Solubility /% 13.29 15.39 16.20 18.67 19.66 20.48
Swelling power /g·g-1 17.98 22.23 25.60 26.57 29.25 31.54
Clarity /% 11.14 14.09 15.84 17.02 17.88 18.15
表 2  原玉米淀粉和乙酰化玉米淀粉的溶解度、膨胀力和糊透明度
图4  原玉米淀粉与乙酰化玉米淀粉的凝沉曲线
NS PVA205 ACS#1 ACS#2 ACS#3 ACS#4 ACS#5
Adhesive force /N 62.90 73.53 69.37 72.87 76.80 78.27 79.53
表 3  原玉米淀粉、乙酰化淀粉和PVA-205 对涤棉混纺粗纱的粘附力
CODcr BOD5 B/C
NCS 823 270 0.328
ACS#1 815 289 0.355
ACS#2 819 283 0.346
ACS#3 822 271 0.330
PVA-205 1480 13 0.009
表4  原玉米淀粉、乙酰化淀粉和PVA-205 的可生化性能指标
1 J. R. Huang, H. A. Schols, Z. Y. Jin, E. Sulmann, A. G. J. Voragen,Characterization of differently sized granule fractions of yellow pea, cowpea and chickpea starches after modification with acetic anhydride and vinyl acetate, Carbohyd. Polym., 76(1), 11(2007)
2 R. L. Shogren, A. Biswas,Facile Route to Anionic Starches—Acetylation of starch with vinyl acetate in imidazolium ionic liquids and characterization of acetate distribution, Carbohyd. Polym., 81(1), 149(2010)
3 Y. J. Wang, L. F. Wang, Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkaline-earth hydroxides, Starch-St?rke, 54(1), 25(2002)
4 P. D. Mbougueng, D. V. Tenin, J. Scher, C. Tchiegang,Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches, J. Food Eng., 108(2), 320(2012)
5 H. A. M. Wickramasinghe, K. Yamamoto, H. Yamauchi, T. Noda,Effect of low level of starch acetylation on physicochemical properties of potato starch, Food Sci. Biotechnol., 18(2), 118(2009)
6 X. Li, W. Y. Gao, Q. Q. Jiang, L. Q. Huang, C. X. Liu, Study on the morphology, crystalline structure, and thermal properties of Fritillaria ussuriensis Maxim— Starch acetates with different degrees of substitution, Starch-St?rke, 63(1), 24(2011)
7 B. Daramola, G. O. Adegoke,Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches, J. Food Agric. Environ., 5(2), 50(2007)
8 C. Fringant, M. Rinaudo, N. Gontard, S. Guilbert, H. Derradji, A biogradable starch based coating to waterproof hydrophilic materials, Starch-St?rke, 50(7), 292(1998)
9 J. Juhanoja, H. Fagerholm, S. Hyvarinen, S. Peltonen, K. Kataja, H. Lampinen, P. Fardim,ToF-SIMS characterization of modified starch on fine and LWC base papers, Nord. Pulp. Pap. Res. J., 22(1), 131(2007)
10 A. V. Singh, L. K. Nath,Evaluation of acetylated moth bean starch as a carrier for controlled drug delivery, Int. J. Biol. Macromol., 50(2), 362(2012)
11 K. P. R. Chowdary, G. V. Radha,Synthesis, characterization and evaluation of starch acetate as microencapsulating agent for controlled release of glipizide, Int. J. Biol. Macromol., 23(5), 1914(2011)
12 J. Chen, Q. Wang, Z. Z. Hua, G. C. Du,Research and application of biotechnology in textile industries in China, Enzyme. Microb. Technol., 40(7), 1651(2007)
13 A. V. Singh, L. K. Nath, M. Guha, Microwave assisted synthesis and characterization of Sago starch-g-acrylamide, Starch-St?rke, 63(11), 740(2011)
14 V. Singh, A. Tiwari, S. Pandey, S. K. Singh, Microwave-accelerated synthesis and characterization of potato starch-g-poly(acrylamide), Starch-St?rke, 58(10), 536(2006)
15 M. Bushra, X. Y. Xu, X. Y. Pan, Z. Zhang, G. C. Du, Microwave assisted acetylation of mung bean starch and the catalytic activity of potassium carbonate in free-solvent reaction, Starch-St?rke, 65(3-4), 236(2013)
16 V. D. Athawale, V. Lele, Microwave assisted acetylation of mung bean starch and the catalytic activity of potassium carbonate in free-solvent reaction, Starch-St?rke, 52(6-7), 205(2000)
17 A. Biswas, R. L. Shogren, G. Selling, J. Salch, J. J. Willett, C. M. Buchanan,Rapid and environmentally friendly preparation of starch esters, Carbohyd. Polym., 74(1), 137(2008)
18 N. Singh, J. Singh, L. Kaur, N. S. Sodhi, B. S. Gill,Morphological, thermal and rheological properties of starches from different botanical sources, Food Chem., 81(2), 219(2003)
19 O. V. López, N. E. Zaritzky, M. A. García,Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity, J. Food Eng., 100(1), 160(2010)
20 S. Saartrat, C. Puttanlek, V. Rungsardthong,Paste and gel properties of low-substituted acetylated canna starches, Carbohyd. Polym., 61(2), 211(2005)
21 H. Chi, K. Xu, X. L. Wu, Q. Chen, D. H. Xue, C. L. Song, W. D. Zhang, P. X. Wang,Effect of acetylation on the properties of corn starch, Food Chem., 106(3), 923(2008)
22 C. I. K. Diop, L. I. Hailong, B. J. Xie, J. Shi,Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates, Food Chem., 126(4), 1662(2011)
23 G. Lewandowicz, T. Jankowski, J. Fornal,Effect of microwave radiation on physico-chemical properties and structure of cereal starches, Carbohyd. Polym., 42(2), 193(2000)
24 N. S. Sodhi, N. Singh,Characteristics of acetylated starches prepared using starches separated from different rice cultivars, J. Food Eng., 70(1), 117(2005)
25 J. Singh, L. Kaur, N. Singh, Effect of acetylation on some properties of corn and potato starches, Starch-St?rke, 56(12), 586(2004)
26 N. Singh, D. Chawla, J. Singh,Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch, Food Chem., 86(4), 601(2004)
27 F. Han, M. Z. Liu, H. H. Gong, S. Y. Lv, B. L. Ni, B. Zhang,Synthesis, characterization and functional properties of low substituted acetylated corn starch, Int. J. Biol. Macromol., 50(4), 1026(2012)
28 Z. F. Zhu, M. L. Li, E. Q. Jin,Effect of an allyl pretreatment of starch on the grafting efficiency and properties of allyl starch-g-poly(acrylic acid), J. Appl. Polym. Sci., 112(5), 2822(2009)
29 WANG Jiankun,HAN Dawei, LV Hairong, Graft modification of starch by rheological phase method based on damping characteristic, Chinese Journal of Materials Research, 24(4), 348(2010)
29 (王建坤, 韩大伟, 吕海荣, 基于阻尼特性的淀粉流变相接枝改性, 材料研究学报, 24(4), 348(2010))
30 N. Teramoto, T. Motoyama, R. Yosomiya, M. Shibata,Synthesis, thermal properties, and biodegradability of propyl-etherified starch, Eur. Polym. J., 39(2), 255(2003)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.