In recent years, heteroepitaxial monocrystalline diamond has been grown by bias voltage technique and its size has been increased to over inch level. Since the application of bias can act as a means to significantly promote nuclear capability of diamound, therefore, the bias voltage technology may be used to prepare oriented diamond films, nano diamond films and ultra-nano diamond films etc. In this paper, the mechanism related with the action of bias technology, the forms and devices of bias technology, as well as the mechanism of surface reaction model, thermal peak model and sublayer injection model are reviewed. The commonly used bias techniques include DC bias, DC pulse bias, pulse overlap bias and bipolar pulse bias. The effect of bias voltage on the microstructure and properties of diamond films are also introduced, and the effect of applied bias voltage on the orientation growth, secondary nucleation rate, amorphous carbon-graphite-diamond phase transition, growth rate and bonding force of diamond films are described in detail. Biasing can change the energy of bombarded particles and the concentration of specific groups, affect the transformation of diamond phase and grain orientation and size, and then affect the optical, mechanical, thermal and electrical properties of diamond films. Some shortcomings in the present research work are also discussed, such as the mechanism related with the action of bias is still not clear, the change of electron concentration and the effect of hydrogen etching are still not clearly explained. Finally, the future research and application directions of bias voltage technology for diamond preparation are also prospected.
Keywords:review
;
chemical vapor deposition
;
bias voltage
;
diamond films
;
heteroepitaxial growth
SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films. Chinese Journal of Materials Research[J], 2022, 36(3): 161-174 DOI:10.11901/1005.3093.2021.287
Fig.1
Schema of a plasma discharge and its modification during BEN[30]
Y. Shigesato等[31]发现,施加负偏压可提高等离子体中原子氢的浓度和电子温度。他们认为,原子氢浓度的提高使sp2碳的蚀刻速率提高并稳定小尺寸sp3团簇,从而在偏压作用下产生一层高sp3含量的碳膜以提供金刚石形核点。而电子温度的提高可改变局部等离子体化学反应,提高CH x+的浓度和碳膜的沉积速率。杨国伟和毛友德[32]认为,负偏压能加速等离子体中的正离子,使其以较大的能量碰撞衬底表面,对衬底表面产生三种作用,如图2所示:第一,加速离子和衬底碰撞,把能量传递给衬底,增强了衬底表面吸附粒子的扩散能力;第二,加速离子和等离子中的粒子以及衬底表面吸附的中性分子CH4碰撞,促进粒子活化,提高衬底表面活性基团的浓度;第三,加速后的正离子与衬底表面碰撞,使其与衬底表层原子键合而成为热扩散粒子的聚集中心, 提高了衬底表面形核点的密度。
Fig.2
Reaction on the surface of silicon substrate during bias processing
J. S. Koehler和F. Seitz[33]提出了热尖峰模型 (Thermal spikes),当入射离子能量转移到基板表面的一个非常小的局部区域时就产生热尖峰。在此过程中原子将多余的能量传递给撞击处的相邻原子,与相邻原子相互作用产生一个存在时间极短(~10-12 s)的高温搅拌原子区域(图3)。使用Seitz和Koehler建立了热尖峰通用模型
Fig.7
Intensity distribution of several ion species for typical BEN conditions (P=25 mbar, T=800℃, MW power=900 W, Ubias=-200 V, 100 sccm H2, 0.25 sccm CH4) (a), total ion fluxes of different groups of ions as a function of bias voltage (b) CSum—the total flux of carbon containing C x H y+, HSum—the total flux of Hy+ and AllSum—the total measured ion flux [51]
S. P. Mcginnis等[63]发现,在偏压处理过程中偏压大小对形核密度有极大的影响。偏压增强金刚石形核有一个阈值电压,低于该电压不能增强形核。高于该阈值电压,金刚石的形核密度则随着偏压的增大而提高。由于衬底种类、腔室结构和等离子体参数(腔压,气体组分,微波功率……)的不同,得到的阈值电压随之不同。M. Regmi等[44]测得的偏压阈值为-125 V,S. P. Mcginnis等[64]测得的阈值偏压为-200 V。最佳形核密度对应的偏压范围通常很窄,只有几十伏,如图9中所示。在他们的实验条件下最优形核偏压范围仅为25~75 V,超过此范围形核密度开始下降。其原因是,在偏压处理过程中金刚石晶核的生长和刻蚀同时存在,形核过程对等离子体环境非常敏感。超过阈值偏压时离子轰击严重损伤金刚石晶核,在临界形核尺寸附近的晶核会被刻蚀掉或被轰击损伤转化成非金刚石相。
Fig.9
Nucleation density on Si vs bias voltage for 2%, 5%, and 15% methane concentration (a) and the nucleation density on Ir and the bias current vs bias voltage for 1% methane concentration (b)
Fig.11
Variation of the process time window for oriented nucleation of diamond on Si (001) with the bias voltage, Filled circles mark heteroepitaxial films, while empty triangles correspond to samples without preferential azimuthal alignment (a) and 10 µm thick diamond films after 15 min exposure to the biasing conditions Ubias= -200 V[72] (b)
A. Saravanan等[73]在n型硅衬底上进行了纳米金刚石薄膜的偏压增强生长(图12),在衬底偏压为0 V时晶粒尺寸为100~200 nm,偏压提高到-200 V薄膜晶粒尺寸减小到30~50 nm。偏压提高到-300 V则晶粒尺寸由纳米级减小到超纳米级。K. Y. Teng等[24]观察到,在生长过程中施加偏压的薄膜中,二次成核频繁发生,使金刚石颗粒的尺寸非常小(约为几十纳米)。-100 V偏置电压就足以诱导二次成核,从而生成纳米颗粒状结构的金刚石薄膜。而在生长过程中未施加偏压的金刚石薄膜中晶粒连续生长而成为柱状晶,并且晶粒尺寸变大。
Fig.12
SEM micrographs of beg-NCD films grown under 0 V (a), -100 V (b), -200 V (c) and -300 V (d) with the inset showing the cross sectional SEM micrographs [73]
关于偏压促进金刚石二次形核的机理,K. Y. Teng等[74]认为,每当非sp3键快速累积在金刚石晶粒表面上就会诱导二次成核。负偏压显著提高了CH4/H2等离子体中含碳物质的(C2或CH)比例和动能,使含碳离子在金刚石表面的积累比原子氢对这些物质的刻蚀更快,因此二次成核很容易从碳质层发生。当原子氢蚀刻在金刚石表面形成的非sp3键时,金刚石晶粒倾向于连续生长而形成柱状晶。而本文作者认为,离子轰击的作用非常重要。持续的离子轰击。会造成金刚石晶粒的损伤,使其表层sp3键转化为sp2键,提供了二次形核的位点,使含碳基团迅速沉积在这些位置上。
在类金刚石薄膜的制备过程中,偏压从-200 V提高到-400 V薄膜内sp3碳的含量逐渐提高,类金刚石薄膜(Diamond like carbon,DLC)的硬度和弹性模量随之增大。偏压继续增加至-600 V和-800 V 时,沉积过程中碳离子能量进一步升高,使DLC 薄膜内部原子发生局域结构和应力驰豫,部分sp3杂化键转变为sp2杂化键[75]。
A. Saravanan等[73, 76]发现,-300 V负偏置电压可以诱导薄膜晶界中产生纳米石墨丝,减少了EFE过程的阈值电压 (E0)。K. Y. Teng等[74]认为,只有在带正电的含碳基团(C2+,CH+,CH3+…等) 具有足够大的动能 (例如-400 eV)时,才能诱导积累的无定形碳转变为纳米石墨。动能不足(例如-100 eV)的含碳基团只会使金刚石的晶格损伤并引起重新成核过程,而不能将无定形碳转化为结晶纳米石墨。K.J. Sankaran等[77]使用MPCVD以CH4/N2为工艺气体并对硅衬底施加负偏压,发现超纳米金刚石薄膜的沉积温度可降低到450℃。如图13所示,偏压辅助生长时间从10 min延长至60 min,薄膜表面的晶粒由棒状向针状再向等轴状转变,薄膜的拉曼光谱中1350 cm-1处的D峰对应无序碳相,1580 cm-1处的G峰对应于石墨相。由TEM照片可见,偏压10 min的样品主要是由超小金刚石晶粒组成的枝状晶,大量的CN基团倾向于粘附在金刚石团簇的()表面形成棒状金刚石晶粒。偏压时间延长至30 min则金刚石晶粒随之变长并且变细,最终形成针状金刚石晶粒,外侧被石墨相包裹。偏压处理60 min的样品,其整个结构的FT图像(FT0c)显示,成环形排列的斑点衍射图样代表随机取向的金刚石(D)簇,位于FT图像中心的甜甜圈形扩散衍射环对应于石墨相。此外,在(111)金刚石衍射点(箭头所示)之外还有离散的衍射点,表明存在n-D相。控制生长时间可控制薄膜的形态和微观结构,从而在较宽的范围内调控金刚石薄膜的电学性能。
Fig.13
SEM micrographs with the insets showing the corresponding Raman spectra and HRTEM images for (a) (d) NUNCDB10 films, (b) (e) NUNCDB30 films, and (c) (f) NUNCDB60 films, which were grown in N2/CH4 plasma under -250 V bias voltage for 10, 30, and 60 min, respectively[72]
Y. C. Chen等[22]用热辅助偏压增强形核/偏压增强生长技术以H2/CH4为工艺气体,制备了颗粒尺寸为3~5 nm的UNCD薄膜,其生长速率可达~1 µm/h。A. M. Ali等[78]用同轴电弧等离子体沉积技术并施加负偏压,在硬质合金(WC-Co)衬底上制备了超纳米金刚石/非晶碳复合薄膜,沉积速率提高到3.24 µm/h,约为无偏压条件下沉积薄膜的3倍,其划痕试验的临界载荷达到31 N,是无偏压薄膜的4倍(图14)。
Fig.14
Microscopic images of Cross-sectional (a) and scratch tracks of UNCD/a-C films deposited at un-bias (c) and cross-sectional (b) and scratch tracks of UNCD/a-C films deposited at bias frequency of 40 kHz[78] (d)
Microstructure, hardness and optical properties of Er2O3 films deposited on diamond-coated and Si(100) substrates by radio frequency magnetron sputtering
Fabrication of heteroepitaxial diamond thin films on Ir(001)/MgO(001) substrates using antenna-edge-type microwave plasma-assisted chemical vapor deposition
Influence of substrate holder configurations on bias enhanced nucleation area for diamond heteroepitaxy: Toward wafer-scale single-crystalline diamond synthesis
Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir
[J]. Diam. Relat. Mater., 2017, 72: 114
AidaH, KimS W, IkejiriK, et al.
Microneedle growth method as an innovative approach for growing freestanding single crystal diamond substrate: Detailed study on the growth scheme of continuous diamond layers on diamond microneedles
Structural modification of nanocrystalline diamond films via positive/negative bias enhanced nucleation and growth processes for improving their electron field emission properties
Negative bias effects on deposition and mechanical properties of ultrananocrystalline diamond/amorphous carbon composite films deposited on cemented carbide substrates by coaxial arc plasma
... [11]Hetero-epitaxial nucleation process on Ir substrate under BEN: the ion bombardment induced-buried lateral growth mechanism[11]Fig.82.2 偏压对金刚石薄膜形核密度的影响
... Y. C. Chen等[22]用热辅助偏压增强形核/偏压增强生长技术以H2/CH4为工艺气体,制备了颗粒尺寸为3~5 nm的UNCD薄膜,其生长速率可达~1 µm/h.A. M. Ali等[78]用同轴电弧等离子体沉积技术并施加负偏压,在硬质合金(WC-Co)衬底上制备了超纳米金刚石/非晶碳复合薄膜,沉积速率提高到3.24 µm/h,约为无偏压条件下沉积薄膜的3倍,其划痕试验的临界载荷达到31 N,是无偏压薄膜的4倍(图14). ...
Porous diamond foam with nanometric diamond grains using Bias Enhanced Nucleation on iridium
2016
Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films
1
2012
... A. Saravanan等[73]在n型硅衬底上进行了纳米金刚石薄膜的偏压增强生长(图12),在衬底偏压为0 V时晶粒尺寸为100~200 nm,偏压提高到-200 V薄膜晶粒尺寸减小到30~50 nm.偏压提高到-300 V则晶粒尺寸由纳米级减小到超纳米级.K. Y. Teng等[24]观察到,在生长过程中施加偏压的薄膜中,二次成核频繁发生,使金刚石颗粒的尺寸非常小(约为几十纳米).-100 V偏置电压就足以诱导二次成核,从而生成纳米颗粒状结构的金刚石薄膜.而在生长过程中未施加偏压的金刚石薄膜中晶粒连续生长而成为柱状晶,并且晶粒尺寸变大. ...
... [30]Schema of a plasma discharge and its modification during BEN[30]Fig.1
Y. Shigesato等[31]发现,施加负偏压可提高等离子体中原子氢的浓度和电子温度.他们认为,原子氢浓度的提高使sp2碳的蚀刻速率提高并稳定小尺寸sp3团簇,从而在偏压作用下产生一层高sp3含量的碳膜以提供金刚石形核点.而电子温度的提高可改变局部等离子体化学反应,提高CH x+的浓度和碳膜的沉积速率.杨国伟和毛友德[32]认为,负偏压能加速等离子体中的正离子,使其以较大的能量碰撞衬底表面,对衬底表面产生三种作用,如图2所示:第一,加速离子和衬底碰撞,把能量传递给衬底,增强了衬底表面吸附粒子的扩散能力;第二,加速离子和等离子中的粒子以及衬底表面吸附的中性分子CH4碰撞,促进粒子活化,提高衬底表面活性基团的浓度;第三,加速后的正离子与衬底表面碰撞,使其与衬底表层原子键合而成为热扩散粒子的聚集中心, 提高了衬底表面形核点的密度. ...
... [30]Fig.1
Y. Shigesato等[31]发现,施加负偏压可提高等离子体中原子氢的浓度和电子温度.他们认为,原子氢浓度的提高使sp2碳的蚀刻速率提高并稳定小尺寸sp3团簇,从而在偏压作用下产生一层高sp3含量的碳膜以提供金刚石形核点.而电子温度的提高可改变局部等离子体化学反应,提高CH x+的浓度和碳膜的沉积速率.杨国伟和毛友德[32]认为,负偏压能加速等离子体中的正离子,使其以较大的能量碰撞衬底表面,对衬底表面产生三种作用,如图2所示:第一,加速离子和衬底碰撞,把能量传递给衬底,增强了衬底表面吸附粒子的扩散能力;第二,加速离子和等离子中的粒子以及衬底表面吸附的中性分子CH4碰撞,促进粒子活化,提高衬底表面活性基团的浓度;第三,加速后的正离子与衬底表面碰撞,使其与衬底表层原子键合而成为热扩散粒子的聚集中心, 提高了衬底表面形核点的密度. ...
Emission spectroscopy during direct-current-biased microwave-plasma chemical vapor deposition of diamond
1
1993
... Y. Shigesato等[31]发现,施加负偏压可提高等离子体中原子氢的浓度和电子温度.他们认为,原子氢浓度的提高使sp2碳的蚀刻速率提高并稳定小尺寸sp3团簇,从而在偏压作用下产生一层高sp3含量的碳膜以提供金刚石形核点.而电子温度的提高可改变局部等离子体化学反应,提高CH x+的浓度和碳膜的沉积速率.杨国伟和毛友德[32]认为,负偏压能加速等离子体中的正离子,使其以较大的能量碰撞衬底表面,对衬底表面产生三种作用,如图2所示:第一,加速离子和衬底碰撞,把能量传递给衬底,增强了衬底表面吸附粒子的扩散能力;第二,加速离子和等离子中的粒子以及衬底表面吸附的中性分子CH4碰撞,促进粒子活化,提高衬底表面活性基团的浓度;第三,加速后的正离子与衬底表面碰撞,使其与衬底表层原子键合而成为热扩散粒子的聚集中心, 提高了衬底表面形核点的密度. ...
CVD生长金刚石薄膜衬底负偏压增强成核效应
1
... Y. Shigesato等[31]发现,施加负偏压可提高等离子体中原子氢的浓度和电子温度.他们认为,原子氢浓度的提高使sp2碳的蚀刻速率提高并稳定小尺寸sp3团簇,从而在偏压作用下产生一层高sp3含量的碳膜以提供金刚石形核点.而电子温度的提高可改变局部等离子体化学反应,提高CH x+的浓度和碳膜的沉积速率.杨国伟和毛友德[32]认为,负偏压能加速等离子体中的正离子,使其以较大的能量碰撞衬底表面,对衬底表面产生三种作用,如图2所示:第一,加速离子和衬底碰撞,把能量传递给衬底,增强了衬底表面吸附粒子的扩散能力;第二,加速离子和等离子中的粒子以及衬底表面吸附的中性分子CH4碰撞,促进粒子活化,提高衬底表面活性基团的浓度;第三,加速后的正离子与衬底表面碰撞,使其与衬底表层原子键合而成为热扩散粒子的聚集中心, 提高了衬底表面形核点的密度. ...
CVD生长金刚石薄膜衬底负偏压增强成核效应
1
... Y. Shigesato等[31]发现,施加负偏压可提高等离子体中原子氢的浓度和电子温度.他们认为,原子氢浓度的提高使sp2碳的蚀刻速率提高并稳定小尺寸sp3团簇,从而在偏压作用下产生一层高sp3含量的碳膜以提供金刚石形核点.而电子温度的提高可改变局部等离子体化学反应,提高CH x+的浓度和碳膜的沉积速率.杨国伟和毛友德[32]认为,负偏压能加速等离子体中的正离子,使其以较大的能量碰撞衬底表面,对衬底表面产生三种作用,如图2所示:第一,加速离子和衬底碰撞,把能量传递给衬底,增强了衬底表面吸附粒子的扩散能力;第二,加速离子和等离子中的粒子以及衬底表面吸附的中性分子CH4碰撞,促进粒子活化,提高衬底表面活性基团的浓度;第三,加速后的正离子与衬底表面碰撞,使其与衬底表层原子键合而成为热扩散粒子的聚集中心, 提高了衬底表面形核点的密度. ...
Steady-state processes not involving lattice rearrangement. Introductory paper
1
1957
... J. S. Koehler和F. Seitz[33]提出了热尖峰模型 (Thermal spikes),当入射离子能量转移到基板表面的一个非常小的局部区域时就产生热尖峰.在此过程中原子将多余的能量传递给撞击处的相邻原子,与相邻原子相互作用产生一个存在时间极短(~10-12 s)的高温搅拌原子区域(图3).使用Seitz和Koehler建立了热尖峰通用模型 ...
Formation of highly tetrahedral amorphous hydrogenated carbon, ta-C:H
Microstructure, hardness and optical properties of Er2O3 films deposited on diamond-coated and Si(100) substrates by radio frequency magnetron sputtering
Fabrication of heteroepitaxial diamond thin films on Ir(001)/MgO(001) substrates using antenna-edge-type microwave plasma-assisted chemical vapor deposition
... S. Yugo等[57]首先在实验中发现,在等离子体化学气相沉积金刚石过程中衬底负偏压对金刚石在光滑Si晶片表面的成核有显著的增强效应,并且利用负偏压效应可使金刚石成核密度达到1010 cm-2.而以往任何增强金刚石成核的方法,不能使其成核密度超过109 cm-2.通过工艺和设备的优化在Si和3C-SiC等衬底上的形核密度可达到1010 cm-2以上,在Ir衬底上金刚石的形核密度甚至达到接近1012 cm-2[44].高密度形核可使金刚石晶粒在早期阶段竞争生长而掩埋掉非取向晶粒,使相邻对齐良好的小晶粒聚合,通过位错湮灭晶界降低薄膜的马赛克度[58, 59].晶粒之间紧密的结合有利于减少薄膜中孔洞和石墨碳夹杂等缺陷,从而提高金刚石薄膜的断裂强度和光学性能.这一点,对超厚金刚石光学膜的制备尤其重要. ...
... S. P. Mcginnis等[63]发现,在偏压处理过程中偏压大小对形核密度有极大的影响.偏压增强金刚石形核有一个阈值电压,低于该电压不能增强形核.高于该阈值电压,金刚石的形核密度则随着偏压的增大而提高.由于衬底种类、腔室结构和等离子体参数(腔压,气体组分,微波功率……)的不同,得到的阈值电压随之不同.M. Regmi等[44]测得的偏压阈值为-125 V,S. P. Mcginnis等[64]测得的阈值偏压为-200 V.最佳形核密度对应的偏压范围通常很窄,只有几十伏,如图9中所示.在他们的实验条件下最优形核偏压范围仅为25~75 V,超过此范围形核密度开始下降.其原因是,在偏压处理过程中金刚石晶核的生长和刻蚀同时存在,形核过程对等离子体环境非常敏感.超过阈值偏压时离子轰击严重损伤金刚石晶核,在临界形核尺寸附近的晶核会被刻蚀掉或被轰击损伤转化成非金刚石相. ...
... [44]Nucleation density on Si vs bias voltage for 2%, 5%, and 15% methane concentration (a) and the nucleation density on Ir and the bias current vs bias voltage for 1% methane concentration (b)Fig.92.3 偏压对金刚石薄膜取向生长的影响
Influence of substrate holder configurations on bias enhanced nucleation area for diamond heteroepitaxy: Toward wafer-scale single-crystalline diamond synthesis
... 用偏压增强形核方法在多种衬底上制备出了高质量的金刚石织构薄膜,并且结合图案化生长的方法制备出了低位错密度和低应力的单晶金刚石[60~62, 66].但是,目前只见到(100),(111)织构/单晶金刚石的异质外延生长[42, 45],尚未见到关于其他取向金刚石薄膜异质外延生长的报导.如图10所示,在3C-SiC[42],β-SiC[67],Si[58],Pt[68],Mo和c-BN上均可制备出强织构金刚石薄膜.J. S. Lee等[69]用两步法在Si衬底上合成了几乎由100%的(100)金刚石晶粒组成的金刚石薄膜.H.Kawarada等[67]在BEN后增加对<001>取向晶核的选择生长以及对晶粒(100)面的扩展生长,在3C-SiC衬底上制备出半峰宽仅为0.6°的(100)织构金刚石薄膜.X. Jiang等[58]发现,BEN后产生的轻微错向的[001]金刚石晶粒可通过将晶界转化成位错而合并.在异质外延生长单晶金刚石过程中,BEN步骤中产生的高密度金刚石晶核可沿着铱衬底晶格生长,晶粒之间的错向非常小,可大面积晶粒聚合从而由多晶转变为单晶金刚石. ...
Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir
2017
Microneedle growth method as an innovative approach for growing freestanding single crystal diamond substrate: Detailed study on the growth scheme of continuous diamond layers on diamond microneedles
... 用偏压增强形核方法在多种衬底上制备出了高质量的金刚石织构薄膜,并且结合图案化生长的方法制备出了低位错密度和低应力的单晶金刚石[60~62, 66].但是,目前只见到(100),(111)织构/单晶金刚石的异质外延生长[42, 45],尚未见到关于其他取向金刚石薄膜异质外延生长的报导.如图10所示,在3C-SiC[42],β-SiC[67],Si[58],Pt[68],Mo和c-BN上均可制备出强织构金刚石薄膜.J. S. Lee等[69]用两步法在Si衬底上合成了几乎由100%的(100)金刚石晶粒组成的金刚石薄膜.H.Kawarada等[67]在BEN后增加对<001>取向晶核的选择生长以及对晶粒(100)面的扩展生长,在3C-SiC衬底上制备出半峰宽仅为0.6°的(100)织构金刚石薄膜.X. Jiang等[58]发现,BEN后产生的轻微错向的[001]金刚石晶粒可通过将晶界转化成位错而合并.在异质外延生长单晶金刚石过程中,BEN步骤中产生的高密度金刚石晶核可沿着铱衬底晶格生长,晶粒之间的错向非常小,可大面积晶粒聚合从而由多晶转变为单晶金刚石. ...
Evidence of an energetic ion bombardment mechanism for bias‐enhanced nucleation of diamond
1
1995
... S. P. Mcginnis等[63]发现,在偏压处理过程中偏压大小对形核密度有极大的影响.偏压增强金刚石形核有一个阈值电压,低于该电压不能增强形核.高于该阈值电压,金刚石的形核密度则随着偏压的增大而提高.由于衬底种类、腔室结构和等离子体参数(腔压,气体组分,微波功率……)的不同,得到的阈值电压随之不同.M. Regmi等[44]测得的偏压阈值为-125 V,S. P. Mcginnis等[64]测得的阈值偏压为-200 V.最佳形核密度对应的偏压范围通常很窄,只有几十伏,如图9中所示.在他们的实验条件下最优形核偏压范围仅为25~75 V,超过此范围形核密度开始下降.其原因是,在偏压处理过程中金刚石晶核的生长和刻蚀同时存在,形核过程对等离子体环境非常敏感.超过阈值偏压时离子轰击严重损伤金刚石晶核,在临界形核尺寸附近的晶核会被刻蚀掉或被轰击损伤转化成非金刚石相. ...
Insights into the ion-assisted nucleation of diamond on silicon
1
1997
... S. P. Mcginnis等[63]发现,在偏压处理过程中偏压大小对形核密度有极大的影响.偏压增强金刚石形核有一个阈值电压,低于该电压不能增强形核.高于该阈值电压,金刚石的形核密度则随着偏压的增大而提高.由于衬底种类、腔室结构和等离子体参数(腔压,气体组分,微波功率……)的不同,得到的阈值电压随之不同.M. Regmi等[44]测得的偏压阈值为-125 V,S. P. Mcginnis等[64]测得的阈值偏压为-200 V.最佳形核密度对应的偏压范围通常很窄,只有几十伏,如图9中所示.在他们的实验条件下最优形核偏压范围仅为25~75 V,超过此范围形核密度开始下降.其原因是,在偏压处理过程中金刚石晶核的生长和刻蚀同时存在,形核过程对等离子体环境非常敏感.超过阈值偏压时离子轰击严重损伤金刚石晶核,在临界形核尺寸附近的晶核会被刻蚀掉或被轰击损伤转化成非金刚石相. ...
Mechanism of bias‐enhanced nucleation of diamond on Si
1
1995
... S. P. Mcginnis等[63]发现,在偏压处理过程中偏压大小对形核密度有极大的影响.偏压增强金刚石形核有一个阈值电压,低于该电压不能增强形核.高于该阈值电压,金刚石的形核密度则随着偏压的增大而提高.由于衬底种类、腔室结构和等离子体参数(腔压,气体组分,微波功率……)的不同,得到的阈值电压随之不同.M. Regmi等[44]测得的偏压阈值为-125 V,S. P. Mcginnis等[64]测得的阈值偏压为-200 V.最佳形核密度对应的偏压范围通常很窄,只有几十伏,如图9中所示.在他们的实验条件下最优形核偏压范围仅为25~75 V,超过此范围形核密度开始下降.其原因是,在偏压处理过程中金刚石晶核的生长和刻蚀同时存在,形核过程对等离子体环境非常敏感.超过阈值偏压时离子轰击严重损伤金刚石晶核,在临界形核尺寸附近的晶核会被刻蚀掉或被轰击损伤转化成非金刚石相.
在硅[65] 和金属铱上金刚石的形核密度与偏压的关系[44]
Nucleation density on Si vs bias voltage for 2%, 5%, and 15% methane concentration (a) and the nucleation density on Ir and the bias current vs bias voltage for 1% methane concentration (b)Fig.92.3 偏压对金刚石薄膜取向生长的影响
Variation of the process time window for oriented nucleation of diamond on Si (001) with the bias voltage, Filled circles mark heteroepitaxial films, while empty triangles correspond to samples without preferential azimuthal alignment (a) and 10 µm thick diamond films after 15 min exposure to the biasing conditions Ubias= -200 V[72] (b)Fig.11
SEM micrographs with the insets showing the corresponding Raman spectra and HRTEM images for (a) (d) NUNCDB10 films, (b) (e) NUNCDB30 films, and (c) (f) NUNCDB60 films, which were grown in N2/CH4 plasma under -250 V bias voltage for 10, 30, and 60 min, respectively[72]Fig.132.6 偏压对金刚石薄膜沉积速率和结合力的影响
Structural modification of nanocrystalline diamond films via positive/negative bias enhanced nucleation and growth processes for improving their electron field emission properties
4
2015
... A. Saravanan等[73]在n型硅衬底上进行了纳米金刚石薄膜的偏压增强生长(图12),在衬底偏压为0 V时晶粒尺寸为100~200 nm,偏压提高到-200 V薄膜晶粒尺寸减小到30~50 nm.偏压提高到-300 V则晶粒尺寸由纳米级减小到超纳米级.K. Y. Teng等[24]观察到,在生长过程中施加偏压的薄膜中,二次成核频繁发生,使金刚石颗粒的尺寸非常小(约为几十纳米).-100 V偏置电压就足以诱导二次成核,从而生成纳米颗粒状结构的金刚石薄膜.而在生长过程中未施加偏压的金刚石薄膜中晶粒连续生长而成为柱状晶,并且晶粒尺寸变大. ...
... [73]SEM micrographs of beg-NCD films grown under 0 V (a), -100 V (b), -200 V (c) and -300 V (d) with the inset showing the cross sectional SEM micrographs [73]Fig.12
关于偏压促进金刚石二次形核的机理,K. Y. Teng等[74]认为,每当非sp3键快速累积在金刚石晶粒表面上就会诱导二次成核.负偏压显著提高了CH4/H2等离子体中含碳物质的(C2或CH)比例和动能,使含碳离子在金刚石表面的积累比原子氢对这些物质的刻蚀更快,因此二次成核很容易从碳质层发生.当原子氢蚀刻在金刚石表面形成的非sp3键时,金刚石晶粒倾向于连续生长而形成柱状晶.而本文作者认为,离子轰击的作用非常重要.持续的离子轰击.会造成金刚石晶粒的损伤,使其表层sp3键转化为sp2键,提供了二次形核的位点,使含碳基团迅速沉积在这些位置上. ...
... [73]Fig.12
关于偏压促进金刚石二次形核的机理,K. Y. Teng等[74]认为,每当非sp3键快速累积在金刚石晶粒表面上就会诱导二次成核.负偏压显著提高了CH4/H2等离子体中含碳物质的(C2或CH)比例和动能,使含碳离子在金刚石表面的积累比原子氢对这些物质的刻蚀更快,因此二次成核很容易从碳质层发生.当原子氢蚀刻在金刚石表面形成的非sp3键时,金刚石晶粒倾向于连续生长而形成柱状晶.而本文作者认为,离子轰击的作用非常重要.持续的离子轰击.会造成金刚石晶粒的损伤,使其表层sp3键转化为sp2键,提供了二次形核的位点,使含碳基团迅速沉积在这些位置上. ...
Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films
2
2012
... 关于偏压促进金刚石二次形核的机理,K. Y. Teng等[74]认为,每当非sp3键快速累积在金刚石晶粒表面上就会诱导二次成核.负偏压显著提高了CH4/H2等离子体中含碳物质的(C2或CH)比例和动能,使含碳离子在金刚石表面的积累比原子氢对这些物质的刻蚀更快,因此二次成核很容易从碳质层发生.当原子氢蚀刻在金刚石表面形成的非sp3键时,金刚石晶粒倾向于连续生长而形成柱状晶.而本文作者认为,离子轰击的作用非常重要.持续的离子轰击.会造成金刚石晶粒的损伤,使其表层sp3键转化为sp2键,提供了二次形核的位点,使含碳基团迅速沉积在这些位置上. ...
Negative bias effects on deposition and mechanical properties of ultrananocrystalline diamond/amorphous carbon composite films deposited on cemented carbide substrates by coaxial arc plasma
3
2019
... Y. C. Chen等[22]用热辅助偏压增强形核/偏压增强生长技术以H2/CH4为工艺气体,制备了颗粒尺寸为3~5 nm的UNCD薄膜,其生长速率可达~1 µm/h.A. M. Ali等[78]用同轴电弧等离子体沉积技术并施加负偏压,在硬质合金(WC-Co)衬底上制备了超纳米金刚石/非晶碳复合薄膜,沉积速率提高到3.24 µm/h,约为无偏压条件下沉积薄膜的3倍,其划痕试验的临界载荷达到31 N,是无偏压薄膜的4倍(图14). ...
... [78]Microscopic images of Cross-sectional (a) and scratch tracks of UNCD/a-C films deposited at un-bias (c) and cross-sectional (b) and scratch tracks of UNCD/a-C films deposited at bias frequency of 40 kHz[78] (d)Fig.143 总结和展望