|
|
偏压技术在金刚石薄膜制备中应用的进展 |
邵思武1, 郑宇亭1,2, 安康1,2, 黄亚博1, 陈良贤1, 刘金龙1, 魏俊俊1, 李成明1( ) |
1.北京科技大学新材料技术研究院 北京 100083 2.北京科技大学顺德研究生院 广东 528399 |
|
Progress on Application of Bias Technology for Preparation of Diamond Films |
SHAO Siwu1, ZHENG Yuting1,2, AN Kang1,2, HUANG Yabo1, CHEN Liangxian1, LIU Jinlong1, WEI Junjun1, LI Chengming1( ) |
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2.Shunde Graduate School, University of Science and Technology Beijing, Guangdong 528399, China |
引用本文:
邵思武, 郑宇亭, 安康, 黄亚博, 陈良贤, 刘金龙, 魏俊俊, 李成明. 偏压技术在金刚石薄膜制备中应用的进展[J]. 材料研究学报, 2022, 36(3): 161-174.
Siwu SHAO,
Yuting ZHENG,
Kang AN,
Yabo HUANG,
Liangxian CHEN,
Jinlong LIU,
Junjun WEI,
Chengming LI.
Progress on Application of Bias Technology for Preparation of Diamond Films[J]. Chinese Journal of Materials Research, 2022, 36(3): 161-174.
1 |
Zhang L, Zhou K, Wei Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage [J]. Appl. Energy, 2019, 233-234(JAN. 1): 208
|
2 |
Wang Y B, Huang N, Liu L S, et al. Preparation and cutting performance of diamond coated hard alloy cutting tools for 7075 aviation Al-alloy [J]. Chin. J. Mater. Res., 2019, 33(1): 15
|
2 |
王宜豹, 黄 楠, 刘鲁生 等. 加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能 [J]. 材料研究学报, 2019, 33(1): 15
|
3 |
Garrett D J, Tong W, Simpson D A, et al. Diamond for neural interfacing: A review [J]. Carbon, 2016, 102: 437
|
4 |
Gao Y, Gao N, Li H, et al. Semiconductor SERS of diamond [J]. Nanoscale, 2018, 10(33): 15788
|
5 |
Yu Y, Qiu W Q, Pan J W, et al. Preparation of inlay structure diamond films on low-alloy steel substrate [J]. Chin. J. Mater. Res., 2013(02): 202
|
5 |
余 赟, 邱万奇, 潘建伟 等. 在低合金钢基体表面沉积镶嵌结构界面金刚石膜 [J]. 材料研究学报, 2013(02): 202
|
6 |
Navalons S, Dhakshinamoorthy A, Alvaro M, et al. Diamond nanoparticles in heterogeneous catalysis [J]. Chem. Mater., 2020, 32(10): 4116
|
7 |
Chae K W, Baik Y J, Park J K, et al. The 8 inch free standing CVD diamond wafer fabricated by DC-PACVD [J]. Diam. Relat. Mater., 2010, 19(10): 1168
|
8 |
Lu Y J, Lin C N, Shan C X, et al. Optoelectronic diamond: growth, properties, and photodetection applications [J]. Adv. Opt. Mater., 2018, 06(20): 1800359
|
9 |
Yuan X L, Zheng Y T, Zhu X H, et al. Recent progress in diamond based MOSFETs [J]. Int. J. Miner., Metall. Mater., 2019, 26(10): 1195
|
10 |
Yamada H, Chayahara A, Mokuno Y, et al. A 2-in mosaic wafer made of a single-crystal diamond [J]. Appl. Phys. Lett., 2014, 104(10): 102110
|
11 |
Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers [J]. Sci. Rep., 2017, 7(1): 1
|
12 |
Fujisaki T, Tachiki M, Taniyama N, et al. Initial growth of heteroepitaxial diamond on Ir(001)/MgO(001) substrates using antenna edge type microwave plasma assisted chemical vapor deposition [J]. Diam. Relat. Mater., 2003, 12(3-7): 246
|
13 |
Vaissiere N, Saada S, Bouttemy M, et al. Heteroepitaxial diamond on iridium: New insights on domain formation [J]. Diam. Relat. Mater., 2013, 36: 16
|
14 |
Sawabe A, Fukuda H, Suzuki T, et al. Interface between CVD diamond and iridium films [J]. Surf. Sci., 2000, 467(1-3): L845
|
15 |
Golding B, Bednarski-meinke C, Dai Z. Diamond heteroepitaxy: pattern formation and mechanisms [J]. Diam. Relat. Mater., 2004, 13(4-8): 545
|
16 |
Wang Y, Wang W, Shu G, et al. Virtues of Ir(100) substrate on diamond epitaxial growth: first-principle calculation and XPS study [J]. J. Cryst. Growth, 2021, 560: 126047
|
17 |
Arnault J C, Saada S, Delclos S, et al. Surface science contribution to the BEN control on Si(100) and 3C-SiC(100): towards ultrathin nanocrystalline diamond films [J]. Chem. Vap. Deposition, 2008, 14(7-8): 187
|
18 |
Hoffman A, Michaelson S, Akhvlediani R, et al. Comparison of diamond bias enhanced nucleation on Ir and 3C-SiC: A high resolution electron energy loss spectroscopy study [J]. Phys. Status Solidi A, 2009, 206(9): 1972
|
19 |
Tachibana T, Yokota Y, Hayashi K, et al. Growth of {111}-oriented diamond on Pt/Ir/Pt substrate deposited on sapphire [J]. Diam. Relat. Mater., 2001, 10(9-10): 1633
|
20 |
Gsell S, Fischer M, Brescia R, et al. Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon [J]. Appl. Phys. Lett., 2007, 91(6): 061501
|
21 |
Gallheber B C, Fischer M, Mayr M, et al. Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111) [J]. J. Appl. Phys., 2018, 123(22): 225302.1-225302.11
|
22 |
Chen Y C, Zhong X Y, Konicek A R, et al. Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth [J]. Appl. Phys. Lett., 2008, 92(13): 240
|
23 |
Vaissiere N, Saada S, Lee K H, et al. Porous diamond foam with nanometric diamond grains using Bias Enhanced Nucleation on iridium [J]. Diam. Relat. Mater., 2016, 68: 23
|
24 |
Teng K Y, Chen H C, Tzeng G C, et al. Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films [J]. J. Appl. Phys., 2012, 111(5): 53701
|
25 |
Fan B Q, Wang C X, Xu Y Z, et al. Influence of deposition pressure on micron-nanometer transition of diamond film [J]. Diamond & Abrasives Engineering., 2021, 41(01): 12
|
25 |
范冰庆, 王传新, 徐远钊 等. 沉积气压对金刚石膜微米纳米结构转变的影响 [J]. 金刚石与磨料磨具工程, 2021, 41(01): 12
|
26 |
Zhang X Q, Huang M D, Ke P L, et al. Impact of bias on the graphite-like carbon films grown by high power impulse magnetron sputtering [J]. Chin. J. Vac. Sci. Technol., 2013, 33(010): 969
|
26 |
张学谦, 黄美东, 柯培玲 等. 基体偏压对高功率脉冲磁控溅射制备类石墨碳膜的影响研究 [J]. 真空科学与技术学报, 2013, 33(010): 969
|
27 |
Huang M D, Xu S P, Liu Y, et al. Influence of negative bias on TiAlN films by arc ion plating [J]. Surf. Technol., 2012, 41(06): 1-3+6
|
27 |
黄美东, 许世鹏, 刘 野 等. 负偏压对电弧离子镀复合TiAlN薄膜的影响 [J]. 表面技术, 2012, 41(06): 1-3+6
|
28 |
Tang P, Wang Q M, Lin Songsheng, et al. Influence of substrate bias on the structure and properties of AlCrN coatings deposited by high power impulse magnetron sputtering [J]. Mater. Res. Appl., 2019, 13(04): 257
|
28 |
唐 鹏, 王启民, 林松盛 等. 基体偏压对高功率脉冲磁控溅射AlCrN涂层结构及其性能的影响 [J]. 材料研究与应用, 2019, 13(04): 257
|
29 |
Zheng Y L, Wu B Z, Yong Z, et al. Effects of superimposed pulse bias on TiN coating in cathodic arc deposition [J]. Surf. Coat. Technol., 2000, 131(1-3): 158
|
30 |
Schreck M. Single Crystal Diamond Growth on Iridium[M]. Compr. Hard Mater., 2014: 269
|
31 |
Shigesato Y, Boekenhauer R E, Sheldon B W, et al. Emission spectroscopy during direct-current-biased microwave-plasma chemical vapor deposition of diamond [J]. Appl. Phys. Lett., 1993, 63(3): 314
|
32 |
Yang G W, Mao Y D. Effect of bisa-enhanced nucleation in diamond films growth by CVD methods [J]. Vacuum, 1996(01): 30
|
32 |
杨国伟, 毛友德. CVD生长金刚石薄膜衬底负偏压增强成核效应 [J]. 真空, 1996(01): 30
|
33 |
Koehler J S, Seitz F. Steady-state processes not involving lattice rearrangement. Introductory paper [J]. Discuss. Faraday Soc., 1957, 23: 85
|
34 |
Weiler M, Robertson J, Sattel S, et al. Formation of highly tetrahedral amorphous hydrogenated carbon, ta-C:H [J]. Diam. Relat. Mater., 1995, 4(4): 268
|
35 |
Lifshitz Y, Kasi S R, Rabalais J W, et al. Subplantation model for film growth from hyperthermal species [J]. Phys. Rev. B, 1990, 41(15): 10468
|
36 |
Lifshitz Y, Kohler T, Frauenheim T, et al. The mechanism of diamond nucleation from energetic species [J]. Science, 2002, 297(5586): 1531
|
37 |
Yao Y, Liao M Y, Koehler T, et al. Diamond nucleation by energetic pure carbon bombardment [J]. Phys. Rev. B, 2005, 72(3): p.035402.1-035402.5
|
38 |
Huang Y B, Chen L X, Jia X, et al. Microstructure, hardness and optical properties of Er2O3 films deposited on diamond-coated and Si(100) substrates by radio frequency magnetron sputtering [J]. Thin Solid Films, 2020, 709: 138131
|
39 |
Forniés E, Galindo R E, Sánchez O, et al. Growth of CrNx films by DC reactive magnetron sputtering at constant N2/Ar gas flow [J]. Surf. Coat. Technol., 2006, 200(20-21): 6047
|
40 |
Fujisaki T, Tachiki M, Taniyama N, et al. Fabrication of heteroepitaxial diamond thin films on Ir(001)/MgO(001) substrates using antenna-edge-type microwave plasma-assisted chemical vapor deposition [J]. Diam. Relat. Mater., 2002, 11(3-6): 478
|
41 |
Huang M D, Sun C, Lin G Q, et al. Mechanical property of low temperature deposited TiN film by pulsed biased arc ion plating [J]. Acta Metall. Sin., 2003, 39(05): 516
|
41 |
黄美东, 孙 超, 林国强 等. 脉冲偏压电弧离子低温沉积TiN硬质薄膜的力学性能 [J]. 金属学报, 2003, 39(05): 516
|
42 |
Suto T, Yaita J, Iwasaki T, et al. Highly oriented diamond (111) films synthesized by pulse bias-enhanced nucleation and epitaxial grain selection on a 3C-SiC/Si (111) substrate [J]. Appl. Phys. Lett., 2017, 110(6): 062102
|
43 |
Zhang P, Du J, Tian F, et al. Research status quo of pulsed bias arc ion plating [J]. Journal Of Academy Of Armored Force Engineering, 2009(02): 71
|
43 |
张 平, 杜 军, 田 飞 等. 脉冲偏压离子镀的研究现状 [J]. 装甲兵工程学院学报, 2009(02): 71
|
44 |
Regmi M, More K, Eres G. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition [J]. Diam. Relat. Mater., 2012, 23: 28
|
45 |
Yaita J, Iwasaki T, Natal M, et al. Heteroepitaxial growth of diamond films on 3C-SiC(001)/Si substrates by antenna-edge microwave plasma CVD[C]// 2014 International Conference on Solid State Devices and Materials. 2014
|
46 |
Arnault J C, Vonau F, Mermoux M, et al. Surface study of iridium buffer layers during the diamond bias enhanced nucleation in a HFCVD reactor [J]. Diam. Relat. Mater., 2004, 13(3): 401
|
47 |
Ohtsuka K, Suzuki K, Sawabe A, et al. Epitaxial growth of diamond on iridium [J]. Jpn. J. Appl. Phys., 1996, 35(8B): L1072
|
48 |
Lim S H, Yoon H S, Moon J H, et al. Optical emission spectroscopy study for optimization of carbon nanotubes growth by a triode plasma chemical vapor deposition [J]. Appl. Phys. Lett., 2006, 88(3): 033114
|
49 |
Schreck M, Stritzker B. Nucleation and growth of heteroepitaxial diamond films on silicon [J]. Phys. Status Solidi, 2010, 154(1): 197
|
50 |
Kátai S, Kováts A, Maros I, et al. Ion energy distributions and their evolution during bias-enhanced nucleation of chemical vapor deposition of diamond [J]. Diam. Relat. Mater., 2000, 9(3-6): 317
|
51 |
Katai S, Tass Z, Hars G, et al. Measurement of ion energy distributions in the bias enhanced nucleation of chemical vapor deposited diamond [J]. J. Appl. Phys., 1999, 86(10): 5549
|
52 |
Gerber J, Weiler M, Sohr O, et al. Investigations of diamond nucleation on a-C films generated by d.c. bias and microwave plasma [J]. Diam. Relat. Mater., 1994, 3(4-6): 506
|
53 |
Bauer T, Schreck M, Hormann F, et al. Analysis of the total carbon deposition during the bias enhanced nucleation of diamond on Ir/SrTiO3 (001) using 13C-methane [J]. Diam. Relat. Mater., 2002, 11(3-6): 493
|
54 |
Hörmann F, Bauer T, Schreck M, et al. TEM analysis of nanometer-size surface structures formed by bias enhanced nucleation of diamond on iridium [J]. Diam. Relat. Mater., 2003, 12(3-7): 350
|
55 |
Li Y F, She J M, Su J J, et al. Heteroepitaxial nucleation of diamond on Ir(100)/MgO(100) substrate by bias enhanced microwave plasma chemical vapor deposition method [J]. J. Synth. Cryst., 2015, 04: 896
|
55 |
李义锋, 佘建民, 苏静杰 等. 偏压加强MPCVD法Ir(100)/MgO(100)基片上金刚石异质外延形核 [J]. 人工晶体学报, 2015, 04: 896
|
56 |
Yoshikawa T, Herrling D, Meyer F, et al. Influence of substrate holder configurations on bias enhanced nucleation area for diamond heteroepitaxy: Toward wafer-scale single-crystalline diamond synthesis [J]. J. Vac. Sci. Technol., 2019, 37(2): 021207
|
57 |
Yugo S, Kanai T, Kimura T, et al. Generation of diamond nuclei by electric field in plasma chemical vapor deposition [J]. Appl. Phys. Lett., 1991, 58(10): 1036
|
58 |
Jiang X, Jia C L. The coalescence of [001] diamond grains heteroepitaxially grown on (001) silicon [J]. Appl. Phys. Lett., 1996, 69(25): 3902
|
59 |
Schreck M, Hörmann F, Roll H, et al. Diamond nucleation on iridium buffer layers and subsequent textured growth: A route for the realization of single-crystal diamond films [J]. Appl. Phys. Lett., 2001, 78(2): 192
|
60 |
Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir [J]. Diam. Relat. Mater., 2019, 94: 92
|
61 |
Ichikawa K, Kodama H, Suzuki K, et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir [J]. Diam. Relat. Mater., 2017, 72: 114
|
62 |
Aida H, Kim S W, Ikejiri K, et al. Microneedle growth method as an innovative approach for growing freestanding single crystal diamond substrate: Detailed study on the growth scheme of continuous diamond layers on diamond microneedles [J]. Diam. Relat. Mater., 2016, 75: 34
|
63 |
McGinnis S P, Kelly M A, Hagstrom S B. Evidence of an energetic ion bombardment mechanism for bias‐enhanced nucleation of diamond [J]. Appl. Phys. Lett., 1995, 66(23): 3117
|
64 |
Mcginnis S P, Kelly M A, Hagstrom S B. Insights into the ion-assisted nucleation of diamond on silicon [J]. J. Mater. Res., 1997, 12(12): 3354
|
65 |
Robertson J, Gerber J, Sattel S, et al. Mechanism of bias‐enhanced nucleation of diamond on Si [J]. Appl. Phys. Lett., 1995, 66(24): 3287
|
66 |
Tang Y H, Golding B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth [J]. Appl. Phys. Lett., 2016, 108(5): 052101
|
67 |
Kawarada H, Wild C, Herres N, et al. Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide [J]. J. Appl. Phys., 1997, 81(8): 3490
|
68 |
Shintani Y. Growth of highly (111)-oriented, highly coalesced diamond films on platinum (111) surface: A possibility of heteroepitaxy [J]. J. Mater. Res., 1996, 11(12): 2955
|
69 |
Lee J S, Liu K S, Lin I N. Direct‐current bias effect on the synthesis of (001) textured diamond films on silicon [J]. Appl. Phys. Lett., 1995, 67(11): 1555
|
70 |
Schreck M, Thürer K H, Klarmann R, et al. Influence of the nucleation process on the azimuthal misorientation of heteroepitaxial diamond films on Si(001) [J]. J. Appl. Phys., 1997, 81(7): 3096
|
71 |
Thürer K H, Schreck M, Stritzker B, et al. Growth and defects of diamond facets under negative biasing conditions in a microwave plasma CVD process [J]. Diam. Relat. Mater., 1997, 6(8): 1010
|
72 |
Thürer K H, Schreck M, Stritzker B. Limiting processes for diamond epitaxial alignment on silicon [J]. Phys. Rev. B, 1998, 57(24): 15454
|
73 |
Saravanan A, Huang B R, Sankaran K J, et al. Structural modification of nanocrystalline diamond films via positive/negative bias enhanced nucleation and growth processes for improving their electron field emission properties [J]. J. Appl. Phys., 2015, 117(21): 215307
|
74 |
Teng K Y, Chen H C, Tzeng G C, et al. Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films [J]. J. Appl. Phys., 2012, 111(5): 053701
|
75 |
Liu C X, Li L L, Wang S F, et al. Effect of bias on structure and tribological properties of diamond-like carbon films [J]. Surf. Technol., 2020, 49(3): 141
|
75 |
刘长鑫, 李璐璐, 王少峰 等. 偏压对DLC薄膜结构及摩擦学性能的影响 [J]. 表面技术, 2020, 49(3): 141
|
76 |
Saravanan A, Huang B R, Sankaran K J, et al. Bias-enhanced post-treatment process for enhancing the electron field emission properties of ultrananocrystalline diamond films [J]. Appl. Phys. Lett., 2015, 106(11): 140
|
77 |
Sankaran K J, Huang B R, Saravanan A, et al. Nitrogen incorporated ultrananocrystalline diamond microstructures from bias-enhanced microwave N2/CH4-plasma chemical vapor deposition [J]. Plasma Processes Polym., 2016, 13(4): 419
|
78 |
Ali A M, Egiza M, Murasawa K, et al. Negative bias effects on deposition and mechanical properties of ultrananocrystalline diamond/amorphous carbon composite films deposited on cemented carbide substrates by coaxial arc plasma [J]. Diam. Relat. Mater., 2019, 96: 67
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|