Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (6): 592-597    DOI:
论文 Current Issue | Archive | Adv Search |
Hydrogen permeation of hot-dip galvanized steel exposed to simulated marine atmosphere
Zhang Dalei1;2; Yan LI1
1.Institute of Oceanology; Chinese Academy of Sciences; Qingdao 266071
2.Graduate School; Chinese Academy of Sciences; Beijing 100039
Cite this article: 

Zhang Dalei Yan LI. Hydrogen permeation of hot-dip galvanized steel exposed to simulated marine atmosphere. Chin J Mater Res, 2009, 23(6): 592-597.

Download:  PDF(929KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydrogen permeation behavior of hot-dip galvanized steels exposed to stimulated marine atmospheric environment at different relative humidity and temperature was investigated by hydrogen permeation current measurement using modified Devanathan cell and scanning electron microscopy technique. Influence of temperature on hydrogen permeation process of galvanized steel exposed to simulated marine atmosphere was discussed. The results show that the rate of hydrogen permeation increased gradually with the temperature rising; higher relative humidity stimulated, more obvious hydrogen permeation current; the hydrogen permeation of galvanized steel was the most rapidly when exposed to marine atmospheric environment with high relative humidity and temperature.

Key words:  materials failure and protection       hot-dip galvanized coating       hydrogen absorption       hydrogen permeation       atmospheric corrosion     
Received:  18 June 2009     
ZTFLH: 

TG174

 
Fund: 

Supported by the National Natural Science Foundation of China No.40576038, the Doctor Foundation No.2006BS07008 and the Natural Science Foundation in Shandong No.Y2008E09.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I6/592

1 E.Dubuisson, P.Lavie, F.Dalard, J.P.Caire, S.Szunerits, Corrosion of galvanised steel under an electrolytic drop, Corrosion Science, 49(3), 910-919(2007)
2 G.A.El-Mahdy, A.Nishikata, T.Tsuru, Electrochemical corrosion monitoring of galvanized steel under cyclic wet±dry conditions, Corrosion Science, 42(1), 183-194(2000)
3 E.Dubuisson, P.Lavie, F.Dalard, J.P.Caire, S.Szunerits, Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet, Electrochemistry Communications, 8(6), 911-915(2006)
4 N.D.Tomashov, Mechanism of electrochemical corrosion of metals under insulating coating. 2. kinetics of cathodic processes on insulated metals in electrolytes, Corrosion, 20(7), T218-&(1964)
5 LI Yan, LIU Meng, ZHANG Yuzhi, ZHANG Dalei, Hydrogen permeation and embrittlement of hot-dip galvanized steel exposed to seawater, The Chinese Journal of Nonferrous Metals, Accepted.
(李 焰, 刘 猛, 张玉志, 张大磊, 热镀锌钢材在海水中的氢渗透行为和脆性研究, 中国有色金属学报, 已录用)
6 S.Oesch, M.Faller, Environmental effects on materials: The effect of the air pollutants SO2, NO2 , NO and O-3 on the corrosion of copper, zinc and aluminum. A short literature survey and results of laboratory exposures, Corrosion Science, 39(9), 1505-1530(1997)
7 Y.Y.Chen, S.C.Chung, H.C.Shih, Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride, Corrosion Science, 48(11), 3547-3564(2006)
8 ZHANG Dalei, LI Yan, Effect of humidity on hydrogen embrittlement susceptivity of hot-dip galvanized steel exposed to simulated marine atmosphere, The Chinese Journal of Nonferrous Metals, Accepted.
(张大磊, 李 焰, 湿度对热镀锌钢材在海洋大气环境中氢脆敏感性的影响, 中国有色金属学报, 已录用)
9 CAOChunan, Natural environmental corrosion of materials in China, (Beijing, Chemical Industrial Press, 2005) p.1
(曹楚南,  中国材料的自然环境腐蚀, (北京, 化学化工出版社, 2005) p.1)
10 D.L.Zhang, Y.Li, Hydrogen permeation characterization of hot-dip galvanized steel in simulated marine atmospheric environment, Advanced Materials Research, 2009, 79-82, Multi-Functional Materials and Structures II:1051-1054
11 D.H.Colemn, B.V.Popov, R.E.White, Hydrogen permeation inhibition by thin layer Zn-Ni alloy electrodeposition, Journal of Applied Electrochemistry, 28(9), 889-894(1998)

12 A.P.Yadav, H.Katayama, K.Noda, H.Masuda, A.Nishikata, T.Tsuru, Surface potential distribution over a zinc/steel galvanic couple corroding under thin layer of electrolyte, Electrochimica Acta, 52(9), 3121-3129(2007)
13 I.Dehri, M.Erbil, The effect of relative humidity on the atmospheric corrosion of defective organic coating materials: an EIS study with a new approach, Corrosion Science, 42(6), 969-978(2000)
14 H.Kim, B.N.Popov, K.S.Chen, Comparison of corrosionresistance and hydrogen permeation properties of Zn-Ni, Zn-Ni-Cd and Cd coatings on low-carbon steel, Corrosion Science, 45(7), 1505-1521(2003)
15 M.Carbucicchio, R.Ciprian, F.Ospitali, G.Palombarini, Morphology and phase composition of corrosion products formed at the zinc-iron interface of a galvanized steel, Corrosion Science, 50(9), 2605-2613(2008)
16 Eiji Tada, Satomi Satoh, Hiroyuki Kaneko, The spatial distribution of Zn2+ during galvanic corrosion of a Zn/steel couple, Electrochimica Acta, 49(14), 2279-2285(2004)
17 A.Tahara, T.Kodama, Potential distribution measurement in galvaniccorrosion of Zn/Fe couple by means of Kelvin probe, Corrosion Science, 42(4), 655-673(2000)

[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Dan ZHANG,Zhenyao WANG. Corrosion Behavior of Zinc Exposed to Salt Lake Area for 48 Months[J]. 材料研究学报, 2019, 33(8): 603-613.
No Suggested Reading articles found!