Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (8): 603-613    DOI: 10.11901/1005.3093.2018.492
ARTICLES Current Issue | Archive | Adv Search |
Corrosion Behavior of Zinc Exposed to Salt Lake Area for 48 Months
Dan ZHANG,Zhenyao WANG()
Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Dan ZHANG,Zhenyao WANG. Corrosion Behavior of Zinc Exposed to Salt Lake Area for 48 Months. Chinese Journal of Materials Research, 2019, 33(8): 603-613.

Download:  HTML  PDF(28039KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of zinc was field exposed to salt-rich arid atmosphere at Qinghai salt lake of Qinghai province at the Northwest China for 48 months was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), metalloscopy and EIS techniques.Results reveal that the corrosion kinetics of zinc in the atmosphere at a selected site followed the empirical equation m=Atn. The corrosion of zinc on the skyward surface is heavier than that on the fieldward one, while spallation of the rust layer on the skyward surface did occur after exposure for 48 months. The corrosion products on the two surfaces were mainly composed of Zn5(OH)8Cl2·H2O, Zn5(CO)3(OH)6, Zn4SO4(OH)6·3H2O, the rust layer contained also certain amount of SiO2. The results of EIS analysis showed that the rust layer could suppress the corrosion of zinc substrate, the corrosion resistance of rust layers on the two surfaces increased with time, then the protectiveness of the rust layer on the skyward surface was weakened for 48 months exposure.

Key words:  materials failure and proterction      zinc      Qinghai salt lake      atmospheric corrosion      the skyward surfaces      EIS     
Received:  13 August 2018     
ZTFLH:  TG172.3  
Fund: Supported by National Science Foundation of China(No. 51671197);Supported by National Science Foundation of China(No. 51601199);Guangzhou Industry-university-research Collaborative Innovation Alliance Special Project(No. 201604046014)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.492     OR     https://www.cjmr.org/EN/Y2019/V33/I8/603

Fig.1  Curve of mass loss vs test time for zinc
Fig.2  The skyward macro appearances of zinc after exposure for 6 (a), 12 (b), 24 (c) and 48 months (d), and the field-ward macro appearances for 6 (a'), 12 (b'), 24 (c') and 48 months (d')
Fig.3  Skyward surface appearances of zinc after exposure for 6 (a), 12 (b), 24 (c) and 48 months (d), and the field-ward surface appearances for 6 (a'), 12 (b'), 24 (c') and 48 months (d')
Fig.4  XRD patterns of zinc (the skyward one (a) and the field-ward one (b)) after exposure
Fig.5  Skyward cross section morphologies of corrosion product layer of zinc after exposure for 6 (a), 12 (b), 24 (c) and 48 months (d), and the field-ward cross section morphologies of corrosion product layer of zinc for 6 (a'), 12 (b'), 24 (c') and 48 months (d')
Position No.Mole fraction/%
COMgNaSAlSiClKCaZn
114.79.72.403.9006.70.90.960.8
2036.106.5015.936.8004.70
37.311.31.403.7004.20072.1
46.914.63.3001.15.39.80.7058.3
5021.65.4000.61.8141.3055.3
Table 1  EDS results of elements at different positions shown in Fig.5
Fig.6  The skyward cross section morphologies of corrosion product layer of zinc without corrosion products after exposure for 6 (a), 12 (b), 24 (c) and 48 months (d), and the field-ward cross section morphologies of corrosion product layer of zinc for 6 (a'), 12 (b'), 24 (c') and 48 months (d')
Fig.7  Nyquist of zinc corroded for different exposure time, (a) the skyward one, (b) the field-ward one
Fig.8  Bode of zinc corroded for different exposure time (a) the skyward one, (b) the field-war one
Fig.9  Equivalent circuit of EIS of zinc
CorrosionThe skyward oneThe field-ward one
time/month61224486122448
Rs/Ω·cm217.182.7521.2834.2816.5230.8432.1128.24
Q1/(Ω·cm2·Sn)-13.444×10-51.052×10-41.929×10-43.743×10-59.311×10-57.300×10-58.348×10-51.497×10-4
n10.5570.3510.4440.4950.4250.5020.5520.453
Rr/Ω·cm231710991044608.6541708.215922379
Q2/(Ω·cm2·Sn)-18.283×10-41.163×10-32.095×10-20.1936.685×10-43.72×10-31.6810-21.806×10-2
n20.4840.6370.7790.6090.6620.4710.8690.926
Rt/Ω·cm2786.3572.3320.1432549.8761.4620431.8
Table 2  Fitted EIS parameters of zinc
Fig.10  EIS parameters of Rp as function of exposure time
Fig.11  Corrosion process schematic diagrams of zinc during exposure in Qinghai Salt Lake atmosphere
[1] Cole I S, Paterson, D A, Ganther W D. Holistic model for atmospheric corrosion. Part I. Theoretical framework for production,transportation and deposition of marine salts [J]. Corr. Eng. Sci,Technol, 2003, 38: 129
[2] Lindstrom R, Svensson J E, Johansson L G, The atmospheric corrosion of zinc in the presence of NaCl-the influence of carbon dioxide and temperature [J]. J. Electrochem. Soc, 2000, 147: 1751
[3] Svensson J E, Johansson L G. A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl; influence of SO2 and NO2 [J]. Corros. Sci, 1993, 34: 721
[4] Aske Y A, Lyon S B, Thompson G E, et al. The effect of fly-ash particulates on the atmospheric corrosion of zinc and mild-steel [J]. Corros. Sci, 1993, 34: 1055
[5] Wang Z Y, Yu G C, Han W. Atmospheric corrosion performance of zinc at several selected sits in china [J]. Corrosion Science and Protection Technology, 2003, 4: 1911
[5] 王振尧, 于国才, 韩 薇. 我国典型大气环境中的锌腐蚀 [J]. 腐蚀科学与防护技术, 2003, 4: 1911
[6] Perssona D, Thierryb D, Karlsson O. Corrosion and corrosion products of hot dipped galvanized steel during long term atmospheric exposure at different sites world-wide [J]. Corros. Sci,2017, 126: 152
[7] Shu D X, Yang X R, Liu Y. Study of Zn corrosion in tropic marine atmosphere [J]. Equipment Environment Engineering,2003, 4: 45
[7] 舒德学, 杨晓然, 罗 勇. 纯锌在热带海洋环境下的大气腐蚀行为及规律 [J]. 装备环境工程, 2003, 4: 45
[8] Lindstrom R, Svensson J E, Johansson L G.The influence of salt deposits on the atmospheric corrosion of zinc, the important role of the sodiumion [J]. J. Electrochem. Soc, 2002, 149: 57
[9] Chen Z Y, Persson D, Leygraf C. Initial NaCl-particle induced atmospheric corrosion of zinc-effect of CO2 and SO2 [J]. Corros. Sci, 2008, 50: 111
[10] Lindstrom R, Svensson J E, Johansson L G. The atmospheric corrosion of zinc in the presence of NaCl-the influence of carbon dioxide and temperature, J. Electrochem [J]. Soc,2000, 147: 1751
[11] Liu A Q, Xiao K, Li X G, et al. Comparison of corrosion behavior of pure Zn and Zn-Al alloy coating in serious Xisha marine atmosphere environment [J]. Thermal Spray Technology, 2005, 4: 46
[11] 刘安强, 肖 葵, 李晓刚等. Zn和ZnAl合金涂层在西沙严酷海洋大气环境下的腐蚀行为的比较 [J]. 热喷涂技术, 2005, 4: 46
[12] Liu Y W, Wang Z Y,Cao G W, et al. Study on corrosion behavior of zinc exposed in coastal-industrial atmospheric environment [J]. Materials Chemistry and Physics, 2017, 198: 243
[13] Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under acidified marine droplets [J]. Corro. Sci, 2011, 53: 1604
[14] Vera R, Rosales B M, Tapia C. Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere [J]. Corros. Sci, 2003, 45: 321
[15] Wang Z Y, Li Q X, Wang C, et al. Corrosion behavior of Al alloy LC4 in geermu salt lake atmosphere [J]. The Chinese Journal of Nonferrous Metals, 2007, 17: 24
[15] 王振尧, 李巧霞, 汪 川等. LC4铝合金在格尔木盐湖大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2007, 17: 24
[16] Wang B B, Wang Z Y, Cao G W, et al. Localized corrosion of Aluminum alloy 2024 exposed to salt lake atmospheric environment in western china [J]. Acta Metallurgica Sinica, 2014, 50: 49
[16] 王彬彬, 王振尧, 曹公望等. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为 [J]. 金属学报, 2014, 50: 49
[17] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, glavanized iron and aluminum at 10 exposure stations in India [J]. Corro. Sci, 2006, 11: 3584
[18] Syed S. Influence of the environment on atmospheric corrosion of aluminium [J].Corrosion Engineering Science and Technology, 2010, 4: 282
[19] Liu S, Sun H Y, Fan J J, et al. Research progress on corrosion behavior of galvanized steel [J]. Materials Protection, 2012, 12: 42
[19] 刘 栓, 孙虎元, 范汇吉等. 镀锌钢腐蚀行为的研究进展 [J]. 材料保护, 2012, 12: 42
[20] Zhang X G. Corrosion of zinc and zinc alloys [J]. Corrosion and Protection, 2006, 1: 41
[20] 章小鸽. 锌和锌合金的腐蚀 [J]. 腐蚀与防护, 2006, 1: 41
[21] Azmat N S, Ralston K D, Muddle B C.Corrosion of Zn under acidified marine droplets [J]. Corro.Sci, 2011, 53: 1604
[22] Bernard M C, Hugot L A, Philips N .Underpaint corrosion of zinc-coat ed steel sheet studied by in situ Raman spectroscopy [J]. Corro. Sci, 1993, 5: 13
[23] Liu Y W, Wang Z Y, Cao G W, et al. Corrosion behavior of Zn simulated acid rain atmospheric environment [J]. The Chinese Journal of Nonferous Metals, 2011, 25: 375
[23] 刘雨薇, 王振尧, 曹公望等. Zn在模拟酸雨大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2011, 25: 375
[24] Chunga S C, Cheng J R, Chioub S D, et al.EIS behavior of anodized zinc in chloride environments [J]. Corro. Sci, 2000, 42: 1249
[25] Chung S C, Sung S L, Hsien C C, et al. SHIH.Application of EIS to the initial stages of atmospheric zinc corrosion [J]. Journal of Applied Electrochemistry, 2000, 30: 607
[26] Katayama H K, Kurodav S J. Long-term atmospheric corrosion properties of thermally sprayed Zn, Aland Zn-Al coatings exposed in a coastal area [J]. Corro. Sci, 2013, 76: 35
[27] Liu S, Sun H Y, Sun L J, et al.Effects of pH and Cl-concentration on corrosion behavior of the galvanized steel in simulated rust layer solution [J]. Corro. Sci, 2012, 65: 520
[28] Stern M, Geary A L. Electrochemical polarization: I. A theoretical analysis of the shape of polarzation curve [J]. J. Electrochem. Soc, 2004, 16: 156
[29] Roberge P, Klassen R, Haberecht P. Atmospheric corrosivity modeling-a review [J]. Mater. Des, 2002, 23: 321
[30] Hosking N, Strom M, Shipway P, et alCorrosion resistance of zinc-magnesium coated steel [J]. Corro. Sci, 2007, 49: 3669
[31] Cui Z Y, Li X G, Xiao K, et al. Corrosion behavior of field-exposed zinc in a tropical marine atmosphere [J]. Corro. Sci, 2014, 70: 731
[32] Cole I S, Ganther W D, Sinclair J Det al, A study of the wetting of metal surfaces in order to understand the processes controlling atmospheric corrosion [J]. J. Electrochem. Soc, 2004, 151: 627
[1] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[2] CHEN Lifei, LUO Yunrong, ZHANG Yingqian, LI Hui, LI Xiulan, LIAO Wenli. Effect of Pre-corrosion by Salt Spray on Extremely Low Cycle Fatigue Performance of HRB400E Seismic Steel Bar[J]. 材料研究学报, 2021, 35(2): 101-109.
[3] ZENG Zeyun, LI Changrong, LI Zhiying, HUANG Sheng, LI Shiwang, YOU Jingtian. Effect of Final Temperature of Cooling on Microstructure and Properties of Aseismic High-strength Steel Rebar[J]. 材料研究学报, 2021, 35(11): 857-865.
[4] LI Hui, PAN Jie, CAO Kaiyuan, LIU Hui, YIN Jie, WANG Yifeng. Preparation of Nano Zinc Oxide/Sodium Alginate Composite Film by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 829-834.
[5] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[6] XU Long,LIU Fuchun,HAN En-Hou. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating[J]. 材料研究学报, 2019, 33(10): 776-784.
[7] Jin WANG, Qingdan HUANG, Jing LIU, Yaru ZHANG, Chuang QIAO, Long HAO, Junhua DONG, Wei KE. Accelerated Indoor Corrosion of Galvanized Steel in a Simulated Atmospheric Environment of Guangzhou Area[J]. 材料研究学报, 2018, 32(8): 631-640.
[8] Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. 材料研究学报, 2018, 32(7): 533-540.
[9] Dan ZHANG, Zhenyao WANG, Yongzhang ZHOU, Yuwei LIU, Qi YIN, Gongwang CAO. Initial Corrosion Behavior of Galvanized Steel in Atmosphere by Qinghai Salt Lake[J]. 材料研究学报, 2018, 32(4): 255-262.
[10] Jing CAO, Licong AN, Xing QI, Yitao YANG. Pitting Corrosion Behavior of Cast Ti-bearing Duplex Stainless Steel[J]. 材料研究学报, 2017, 31(7): 553-560.
[11] Na WANG,Yinan ZHANG,Honghe LUAN,Jing ZHANG. Preparation and Anti-corrosion Properties of Waterborne Epoxy Coatings Containing Organic Microspheres[J]. 材料研究学报, 2017, 31(1): 1-8.
[12] Shasha WANG,Lang YANG,Yunhua HUANG,Kui XIAO,Xiaogang LI. Initial Corrosion Behavior in Different Atmospheric Environments of 6061Al Alloy Anodized in Boron-sulfuric Acid Solution[J]. 材料研究学报, 2017, 31(1): 49-56.
[13] Siqi WANG,Fuchun LIU,Junjun CHEN,En-Hou HAN,Song XU,Botao HU,Jiazheng LU. Influence of Flaky Nickel Powder on Permeation Resistance of Fluorocarbon Coatings[J]. 材料研究学报, 2015, 29(4): 255-261.
[14] Ran XU,Yanhua WANG,Jia WANG,Zaijian LIU,Yuan ZHANG. Influence of Spreadability of Seawater Droplet on Electrochemical Characteristics of Carbon Steel[J]. 材料研究学报, 2015, 29(2): 95-100.
[15] Lei ZHANG,Sujun WU,Guojin SUN,Qingshen MA. Surface Grain Boundary Characteristics and Electrochemical Behavior of Hot Rolled High Ni High Strength Steel[J]. 材料研究学报, 2014, 28(1): 67-74.
No Suggested Reading articles found!