Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (6): 415-422    DOI: 10.11901/1005.3093.2017.463
ARTICLES Current Issue | Archive | Adv Search |
Characteristics of Acoustic Emission Signal from Fracture Process of 316LN Stainless Steel
Jin ZHANG1, Mengyu CHAI1, Jinghai XIANG1, Quan DUAN1(), Lichan LI2
1 School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi'an 710049, China;
2 State Nuclear Power Engineering Company Limited, Shanghai 200233, China
Cite this article: 

Jin ZHANG, Mengyu CHAI, Jinghai XIANG, Quan DUAN, Lichan LI. Characteristics of Acoustic Emission Signal from Fracture Process of 316LN Stainless Steel. Chinese Journal of Materials Research, 2018, 32(6): 415-422.

Download:  HTML  PDF(6430KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fracture toughness tests of the matrix and weld joint of 316LN stainless steel (SS) were carried out, while the acoustic emission (AE) signals were monitored simultaneously during the fracture process in real time. Then the AE signals were classified. The results show that the fracture of the matrix of 316LN SS and the weld joint was ductile ones, and the plasticity of the matrix was better than that of the weld joint. The fracture process could be divided into five stages including the crack tip opening stage, the elastic deformation stage, the plastic deformation stage, the crack initiation stage and the stable crack propagation stage. Moreover, the correlation analyses of rise time and duration of the AE signals indicated that the fracture processes could be classified into several categories, which was available for distinguishing the noise signal and effective fracture signal within the AE signal spectrum.

Key words:  materials failure and protection      fracture toughness      acoustic emission technology      316LN stainless steel      association analysis     
Received:  31 July 2017     
ZTFLH:  TG115  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.463     OR     https://www.cjmr.org/EN/Y2018/V32/I6/415

C N Cr Ni Mo Mn Si P S
0.023 0.16 16.43 11.33 2.25 1.45 0.46 0.024 0.001
Table 1  Chemical composition of 316LN stainless steel (mass fraction, %)
Backing weld Filling bead Cosmetic bead Welding speed
/mmmin-1
Current/A Voltage/V Current/A Voltage/V Current/A Voltage/V
115 24.6 130 25.2 130 25.2 150
Table 2  Welding parameters of specimens
Fig.1  Specimen size (mm)
Fig.2  Experimental system diagram
Fig.3  Microstructures of the tested steels (a) base metal and (b) weld zone
Fig.4  P-V curves of loading process for base metal (BM) and weld zone (WZ) specimens
Fig.5  Fitting curves of δ vs.Δa for base metal (BM) and weld zone (WZ) specimens
Fig.6  Fracture surfaces of base metal (a) and weld zone (b)
Fig.7  SEM images of base metal (a) low magnification and (b) high magnification
Fig.8  SEM images of weld zone
Element Fe Cr Ni Mo Mn Si
Base metal 67.97 17.75 9.01 2.21 1.81 1.21
Weld zone 65.73 20.53 8.87 2.04 1.83 0.97
Table 3  EDS results of fracture surfaces for base metal and weld zone (%, mass fraction)
Fig.9  Load and voltage vs. displacement of weld zone (a) and base metal (b)
Fig.10  Cumulative count and cumulative energy vs. time of weld zone (a) and base metal (b)
Fig.11  AE amplitude vs. time of weld zone (a) and base metal (b)
Fig.12  Distribution of AE signal groups
Fig.13  Rise time vs. duration time of weld zone (a) and base metal (b)
[1] Arii M, Kashiwaya H, Yanuki T.Slow crack growth and acoustic emission characteristics in COD test[J]. Eng. Fract. Mech., 1975, 7: 551
[2] Camerini C S, Rebello J M A, Soares S D. Relationship between acoustic emission and CTOD testing for a structural steel[J]. NDT E Int., 1992, 25: 127
[3] Blanchette Y, Dickson J I, Bassim M N.The use of acoustic emission to evaluate critical values of K and J in 7075-T651 aluminum alloy[J]. Eng. Fract. Mech., 1984, 20: 359
[4] Clark G, Knott J F.Acoustic emission and ductile crack growth in pressure-vessel steels[J]. Metal Sci., 1977, 11: 531
[5] Long X, Cai G J, Svensson L E.Investigation of fracture and determination of fracture toughness of modified 9Cr-1Mo steel weld metals using AE technique[J]. Mater. Sci. Eng., 1999, 270A: 260
[6] Roy H, Parida N, Sivaprasad S, et al.Acoustic emissions during fracture toughness tests of steels exhibiting varying ductility[J]. Mater. Sci. Eng., 2008, 486A: 562
[7] Mukhopadhyay C K, Sasikala G, Jayakumar T, et al.Acoustic emission during fracture toughness tests of SA333 Gr.6 steel[J]. Eng. Fract. Mech., 2012, 96: 294
[8] Chai M Y, Duan Q, Hou X L, et al.Fracture toughness evaluation of 316LN stainless steel and weld using acoustic emission technique[J]. ISIJ Int., 2016, 56: 875
[9] Sindi C T, Najafabadi M A, Ebrahimian S A.Fracture toughness determination of heat treated AISI D2 tool steel using AE technique[J]. ISIJ Int., 2011, 51: 305
[10] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Republic of China. GB/T21143-2007 Metallic materials-Unified method of test for determination of quasistatic fracture toughness [S]. Beijing: Standards Press of China, 2008中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T21143-2007 金属材料准静态断裂韧度的统一试验方法 [S]. 北京: 中国标准出版社, 2008
[11] Ha K F.Physical Basis of Fracture [M]. Beijing: Science Press, 2000哈宽富. 断裂物理基础 [M]. 北京: 科学出版社, 2000
[12] Heiple C R, Carpenter S H.Acoustic emission produced by deformation of metals and alloys-a review[J]. J. Acoust. Emiss., 1987, 6: 177
[13] Ennaceur C, Laksimi A, Hervé C, et al.Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference [J]. Int. J. Press. Vessels Piping, 2006, 83: 197
[14] Li D S, Ou J P.Monitoring damage of arch bridge suspender using acoustic emission technique[J]. J. Shenyang Jianzhu Univ.(Nat. Sci.), 2007, 23: 6李冬生, 欧进萍. 声发射技术在拱桥吊杆损伤监测中的应用[J]. 沈阳建筑大学学报(自然科学版), 2007, 23: 6
[15] Lu C P, Dou L M.Damage and monitoring with acoustic emission and electromagnetic emission of rocks around the tunnel[J]. J. China Coal Soc., 2004, 29: 41陆菜平, 窦林名. 隧道围岩的损伤与声电监测[J]. 煤炭学报, 2004, 29: 41
[16] Dou L M, He X Q.Monitoring the rock activity around a tunnel with AE[J]. Appl. Acoust., 2002, 21(5): 25窦林名, 何学秋. 声发射监测隧道围岩活动性[J]. 应用声学, 2002, 21(5): 25
[1] YANG Baolei, LIU Tingguang, SU Xianglin, FAN Yu, QIU Liang, LU Yonghao. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN[J]. 材料研究学报, 2023, 37(5): 381-390.
[2] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] LIU Ming, WU Jianan. Scratch Behavior of Materials under Progressive Load by Conical Indenter[J]. 材料研究学报, 2022, 36(3): 191-205.
[5] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[12] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[13] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[14] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[15] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
No Suggested Reading articles found!