Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (6): 409-414    DOI: 10.11901/1005.3093.2018.157
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets
Qiang WANG, Ruiting HAO(), Qichen ZHAO, Sijia LIU
College of Energy and Environmental Sciences, Yunnan Normal University, Kunming 650500, China
Cite this article: 

Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets. Chinese Journal of Materials Research, 2018, 32(6): 409-414.

Download:  HTML  PDF(3293KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Layered films of Cu2ZnSnS4 (CZTS) thin films were prepared by sequentially and cyclically sputtering three targets of ZnS, CuS and SnS, which then were annealing at 360℃ for 30 min, afterwards they were sulfurized in a graphite box with 0.5 g sulfur powder at 600℃ for desired period of time. For three cycles of sputtering (T3), the prepared CZTS thin layered film is dense and compact with smooth surface, uniform crystal-grain size and a band gap of 1.5 eV. The solar cell assembled by the T3 ZTS film has better performance with the following parameters: the open circuit voltage 623 mV and the short-circuit current density 11.79 mA/cm2, respectively. Correspondingly, the photoelectric conversion efficiency could reach 2.93%.

Key words:  synthesizing and processing technics for materials      periodic sputtering      CZTS      high temperature sulfurization     
Received:  06 February 2018     
ZTFLH:  TM615  
Fund: Supported by National Natural Science Foundation of China (Nos. 61774130, 11474248, 61176127 & 61006085), Key Program for International S & T Cooperation Projects of China (No. 2011DFA62380), and the Ph.D. Programs Foundation of Ministry of Education of China (No. 20105303120002)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.157     OR     https://www.cjmr.org/EN/Y2018/V32/I6/409

Stacking sequence Atomic component/% Atomic ratio
Cu Zn Sn S Cu/(Zn+Sn) Zn/Sn S/(Cu+Zn+Sn)
T1 21.28 14.65 12.85 51.22 0.77 1.14 1.05
T2 20.89 14.01 12.31 52.78 0.79 1.14 1.06
T3 22.01 13.43 12.10 52.47 0.86 1.11 1.10
Table1  EDS test results of thin film samples were prepared by periodic variation
Fig.1  XRD diffraction patterns of thin film samples with T1, T2 and T3 cycles
Periodicity 2θ/(°) FWHM/(°) D/nm
T1 28.481 0.335 0.31313
T2 28.460 0.335 0.31336
T3 28.460 0.332 0.31336
Table 2  Structural parameters of the 112 crystal planes of CZTS samples were obtained for T1, T2 and T3 cycles
Fig.2  Raman scattering spectra of thin film samples prepared by T1, T2 and T3 cycles
Fig.3  Suface SEM images of thin film samples prepared by T1, T2 and T3 cycles
Fig.4  Cross-section SEM images of CZTS films prepared by (a) T1, (b) T2 and (c) T3 cycles
Fig.5  Plots of (αhν)2 vs. () of CZTS films prepared by T1, T2 and T3 cycles
Fig.6  Illuminated J-V characteristics (AM1.5, 100 mW/cm2, 300 K) of CZTS film solar cells
[1] Tablero C.Effect of the oxygen isoelectronic substitution in Cu2ZnSnS4 and its photovoltaic application[J]. Thin Solid Films, 2012, 520: 5011
[2] Xie M, Zhuang D M, Liu J, et al.The influence of sulfurization temperature on the properties of Cu2ZnSnS4 thin film[J]. Chin. J. Mater. Res., 2013, 27: 126谢敏, 庄大明, 刘江等. 硫化温度对铜锌锡硫薄膜特性的影响[J]. 材料研究学报, 2013, 27: 126
[3] Nakayama N, Ito K.Sprayed films of stannite Cu2ZnSnS4[J]. Appl. Surf. Sci., 1996, 92: 171
[4] Green M A, Emery K, Hishikawa Y, et al.Solar cell efficiency tables (version 39)[J]. Prog. Photovolt. Res. Appl., 2012, 20: 12
[5] Katagiri H, Jimbo K, Yamada S, et al.Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique[J]. Appl. Phys. Express, 2008, 1: 041201
[6] Shin B, Gunawan O, Zhu Y, et al.Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber[J]. Prog. Photovolt. Res. Appl., 2013, 21: 72
[7] Lee Y S, Gershon T, Gunawan O, et al.Cu2ZnSnSe4 thin-film solar cells by thermal Co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Adv. Energy Mater., 2015, 5: 1401372
[8] Liu H, Xue Y M, Qiao Z X, et al.Progress of application research on Cu2ZnSnS4 thin film and its device[J]. Acta Phys. Sin., 2015, 64: 068801刘浩, 薛玉明, 乔在祥等. 铜锌锡硫薄膜材料及其器件应用研究进展[J]. 物理学报, 2015, 64: 068801
[9] Wang W, Winkler M T, Gunawan O, et al.Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Adv. Energy Mater., 2014, 4: 132
[10] Salomé P M P, Malaquias J, Fernandes P A, et al. The influence of hydrogen in the incorporation of Zn during the growth of Cu2ZnSnS4 thin films[J]. Solar Energy Mater. Solar Cells, 2011, 95: 3482
[11] Weber A, Mainz R, Schock H W.On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J]. J. Appl. Phys., 2010, 107: 013516
[12] Scragg J J, Ericson T, Kubart T, et al.Chemical insights into the instability of Cu2ZnSnS4 films during annealing[J]. Chem. Mater., 2011, 23: 4625
[13] Katagiri H, Jimbo K, Tahara M, et al.The influence of the composition ratio on CZTS-based thin film solar cells [A]. Materials Research Society Symposia Proceedings[C]. Materials Research Society, 2009: 116
[14] Liu F Y, Yi L, Zhang K, et al.In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering[J]. Solar Energy Mater. Solar Cells, 2010, 94: 2431
[15] Luckert F, Hamilton D I, Yakushev M V, et al.Optical properties of high quality Cu2ZnSnSe4 thin films[J]. Appl. Phys. Lett., 2011, 99: 2250
[16] Fairbrother A, Fontané X, Izquierdo-Roca V, et al.On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks[J]. Solar Energy Mater. Solar Cells, 2013, 112: 97
[17] Scragg J J, Ericson T, Fontané X, et al.Rapid annealing of reactively sputtered precursors for Cu2ZnSnS4 solar cells[J]. Prog. Photovolt. Res. Appl., 2014, 22: 10
[18] Kim S, Oh M, Kim W K.Effect of Sn-layer addition to precursors on characteristics of Cu2ZnSn(S,Se)4 thin-film solar cell absorber[J]. Thin Solid Films, 2013, 549: 59
[19] He J, Sun L, Zhang K Z, et al.Effect of post-sulfurization on the composition, structure and optical properties of Cu2ZnSnS4 thin films deposited by sputtering from a single quaternary target[J]. Appl. Surf. Sci., 2013, 264: 133
[20] Amal M I, Kim K H.Crystallization of kesterite Cu2ZnSnS4 prepared by the sulfurization of sputtered Cu-Zn-Sn precursors[J]. Thin Solid Films, 2013, 534: 144
[21] Marchionna S, Garattini P, Le Donne A, et al.Cu2ZnSnS4 solar cells grown by sulphurisation of sputtered metal precursors[J]. Thin Solid Films, 2013, 542: 114
[22] Momose N, Htay M T, Yudasaka T, et al. Cu2ZnSnS4 thin film solar cells utilizing sulfurization of metallic precursor prepared by simultaneous sputtering of metal targets [J]. Jpn. J. Appl. Phys., 2011, 50: 01BG09
[23] Leit?o J P, Santos N M, Fernandes P A, et al.Study of optical and structural properties of Cu2ZnSnS4 thin films[J]. Thin Solid Films, 2011, 519: 7390
[24] Ericson T, Scragg J J, Kubart T, et al.Annealing behavior of reactively sputtered precursor films for Cu2ZnSnS4 solar cells[J]. Thin Solid Films, 2013, 535: 22
[25] Brammertz G, Ren Y, Buffière M, et al.Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers[J]. Thin Solid Films, 2013, 535: 348
[26] Chang W H, Shin S W, Gurav K V, et al.Comparative study on the annealing types on the properties of Cu2ZnSnS4 thin films and their application to solar cells[J]. Appl. Surf. Sci., 2015, 334: 180
[27] Pawar S M, Inamdar A I, Gurav K V, et al.Growth of void free Cu2ZnSnS4 (CZTS) thin films by sulfurization of stacked metallic precursor films[J]. Vacuum, 2014, 104: 57
[1] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[2] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[3] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[4] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[5] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[6] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[7] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[8] Shixu JIANG, Chao ZHOU, Tiancai ZHANG, Yanmin GAO. Effect of Solubility Parameter of Alcohols Solvents on Performance of Cu2ZnSnS4 Particles[J]. 材料研究学报, 2016, 30(11): 861-867.
[9] SHEN Yinan CHEN Huahui HU Yu. The grain composition’s influence on the performance of the porous ceramic[J]. 材料研究学报, 2011, 25(5): 550-556.
No Suggested Reading articles found!