Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (6): 423-431    DOI: 10.11901/1005.3093.2017.464
ARTICLES Current Issue | Archive | Adv Search |
Influence of Quench Rate on Exfoliation Corrosion Resistance of Rolled 7020 Al-alloy Plate
Shengdan LIU1,2,3, Chen GUO1,2, Lingying YE1,2,3(), Zhenshen YANG1,2, Yunlai DENG1,2,3
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha 410083, China
3 Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Changsha 410083, China
Cite this article: 

Shengdan LIU, Chen GUO, Lingying YE, Zhenshen YANG, Yunlai DENG. Influence of Quench Rate on Exfoliation Corrosion Resistance of Rolled 7020 Al-alloy Plate. Chinese Journal of Materials Research, 2018, 32(6): 423-431.

Download:  HTML  PDF(9370KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of quench rate after solution treatment on the exfoliation corrosion resistance of the rolled 7020 Al-alloy plate was studied by means of standard exfoliation corrosion immersion tests and electrochemical impedance spectroscope (EIS) technique, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) technique and scanning transmission electron microscopy (STEM). Results showed that the exfoliation corrosion resistance of this alloy plate decreases with quench rate decreasing from 1800℃/min to 38℃/min. Correspondingly, the corrosion-ranking of the alloy degrades from EA to EB+, while the maximum corrosion depth increases from 388 μm to 570 μm. The relevant mechanism was discussed based on the effect of quench rate on the changes in the size, the number, the spacing and the microchemistry of grain boundary precipitates as well as the width of precipitate free zone.

Key words:  metallic materials      7020 aluminum alloy      quench rate      exfoliation corrosion      grain boundary precipitate      precipitate free zone     
Received:  30 July 2017     
ZTFLH:  TG146  
Fund: Supported by Hunan Science and Technology Major Project (No. 2016GK1004) and Shenghua Yuying Project of Central South University (No. 20130603) and the National Key Research and Development Program of China (No. 2016YFB0300901)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.464     OR     https://www.cjmr.org/EN/Y2018/V32/I6/423

Element Zn Mg Cu Cr Zr Mn Fe V Ti Si Al
Content 4.65 1.13 0.15 0.18 0.14 0.36 0.41 0.012 0.043 0.14 Bal.
Table 1  Chemical compositions of 7020 aluminum alloy (%, mass fraction)
Fig.1  SEM images of (a) room temperature water, (b) boiling water (c) air quenched 7020 aluminum alloy after immersion in EXCO solution for 30 minutes
Fig.2  Corrosion morphologies of 7020 aluminum alloy quenched in (a) room temperature water, (b) boiling water and (c) air after immersion in EXCO solution for 12 h and 48 h
Fig.3  Cross-sectional images of 7020 aluminum alloy quenched in (a) room temperature water, (b) boiling water and (c) air after immersion in EXCO solution for 48 h
Table 2  Electrochemical parameters of the equivalent circuit and corresponding maximum corrosion depth
Fig.4  (a) Nyquist plot of 7020 aluminum alloy in EXCO solution, (b) equivalent circuit
Fig.5  Inverse pole figure maps of 7020 aluminum alloy (a) ND-RD section, (b) TD-RD section
Fig.6  STEM images of 7020 aluminum alloy quenched in (a) room temperature water, (b) boiling water and (c) air
Fig.7  STEM images of 7020 aluminum alloy quenched in (a) room temperature water, (b) boiling water and (c) air
Fig.8  Statistics of (a) the size and (b) spacing of the grain boundaries precipitates and (c) the width of precipitate free zone
Fig.9  Variations of the contents of Zn, Mg, Cu elements in grain boundary precipitates
Fig.10  Schematic diagrams of corrosion process development in (a) fast-quenched and (b) slowly-quenched 7020 aluminum alloy
[1] Liao W B, Liu X Y, Liu S D, et al.Effect of exfoliation corrosion on mechanical properties of 7055 aluminum alloy sheet[J]. J. Cent. South Univ.(Sci. Technol.), 2012, 43: 2137廖文博, 刘心宇, 刘胜胆等. 剥落腐蚀对7055铝合金板材力学性能的影响[J]. 中南大学学报(自然科学版), 2012, 43: 2137
[2] Xiao T, Lin H Q, Ye L Y, et al.Effect of corrosion conditions on strength and toughness of Al-Zn-Mg aluminum alloys[J]. Chin. J. Nonferrous Met., 2016, 26: 1391肖涛, 林化强, 叶凌英等. 腐蚀条件对Al-Zn-Mg铝合金强韧性能的影响[J]. 中国有色金属学报, 2016, 26: 1391
[3] Li C B, Zhang X M, Liu S D, et al.Quench sensitivity relative to exfoliation corrosion of 7085 aluminum alloy[J]. Chin. J. Mater. Res., 2013, 27: 454李承波, 张新明, 刘胜胆等. 7085铝合金剥落腐蚀的淬火敏感性[J]. 材料研究学报, 2013, 27: 454
[4] Yang F, Xu X J, Deng P A, et al.Effect of T76 temper on mechanical properties and corrosion resistance of an ultra-high strength aluminum alloy[J]. Trans. Mater. Heat Treat., 2016, 37(11): 40杨帆, 许晓静, 邓平安等. T76时效对超高强铝合金力学性能与抗腐蚀性能的影响[J]. 材料热处理学报, 2016, 37(11): 40
[5] Chao H, Chen K H, Fang H C, et al.Effect of triple-solution on microstructure and exfoliation corrosion properties of Al-Zn-Mg-Cu aluminum alloy[J]. Mater. Sci. Eng. Powder Metall., 2009, 14: 179巢宏, 陈康华, 方华婵等. 三级固溶处理对Al-Zn-Mg-Cu系铝合金组织和剥落腐蚀性能的影响[J]. 粉末冶金材料科学与工程, 2009, 14: 179
[6] Yin Z M, Fang J F, Huang J W, et al.Effects of aging treatment on intercrystalline corrosion and exfoliation corrosion behavior of 7A52 aluminum alloy[J]. J. Cent. South Univ.(Sci. Technol.), 2007, 38: 617尹志民, 方家芳, 黄继武等. 时效工艺对7A52铝合金晶间腐蚀和剥蚀行为的影响[J]. 中南大学学报(自然科学版), 2007, 38: 617
[7] Song F X, Zhang X M, Liu S D, et al.The effect of quench rate and overageing temper on the corrosion behaviour of AA7050[J]. Corros. Sci., 2014, 78: 276
[8] Meng Q J, Frankel G S.Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys[J]. J. Electrochem. Soc., 2004, 151: B271
[9] Goswami R, Lynch S, Holroyd N J H, et al. Evolution of grain boundary precipitates in Al 7075 upon aging and correlation with stress corrosion cracking behavior[J]. Metall. Mater. Trans., 2012, 44A: 1268
[10] Liu S D, Li C B, Ou Y H, et al.Quench sensitivity of ultrahigh strength 7000 series aluminum alloys[J]. Chin. J. Nonferrous Met., 2013, 23: 927刘胜胆, 李承波, 欧阳惠等. 超高强7000系铝合金的淬火敏感性[J]. 中国有色金属学报, 2013, 23: 927
[11] Deschamps A, Texier G, Ringeval S, et al.Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy[J]. Mater. Sci. Eng., 2009, 501A: 133
[12] Hu G Y, Chen S Y, Jiang H L, et al.Effect of RE Ce on microstructure and properties of 7A52 aluminum alloy[J]. Chin. J. Nonferrous Met., 2016, 26: 1372胡桂云, 陈送义, 姜慧丽等. 稀土Ce对7A52铝合金组织与性能的影响[J]. 中国有色金属学报, 2016, 26: 1372
[13] Cao C N.Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008
[14] Liu S D, Chen B, Li C B, et al.Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy[J]. Corros. Sci., 2015, 91: 203
[15] Chen S Y, Chen K H, Peng G S, et al.Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 47
[16] Song F X, Zhang X M, Liu S D, et al.Exfoliation corrosion behavior of 7050-T6 aluminum alloy treated with various quench transfer time[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2258
[17] Fang H C, Chao H, Zhang Z, et al.Effect of Zr, Ti and Cr additions on microstructure and properties of super-high strength Al-Zn-Mg-Cu alloys[J]. J. Cent. South Univ.(Sci. Technol.), 2016, 47: 420方华婵, 巢宏, 张茁等. 复合添加Zr, Ti和Cr对Al-Zn-Mg-Cu超强合金组织与性能的影响[J]. 中南大学学报(自然科学版), 2016, 47: 420
[18] Wloka J, Hack T, Virtanen S.Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corros. Sci., 2007, 49: 1437
[19] Zhang X M, Liu S D, Liu Y, et al.Influence of quench rate and zirconium content on intergranular corrosion of 7055 type aluminum alloy[J]. J. Cent. South Univ.(Sci. Technol.), 2007, 38: 181张新明, 刘胜胆, 刘瑛等. 淬火速率和锆含量对7055型铝合金晶间腐蚀的影响[J]. 中南大学学报(自然科学版), 2007, 38: 181
[20] Huang L P, Chen K H, Li S.Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al-Zn-Mg-Cu alloy[J] Mater. Sci. Eng., 2012, 177B: 862
[21] Kim S H, Erb U, Aust K T.Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum[J]. Scr. Mater., 2001, 44: 835
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!