Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (3): 191-205    DOI: 10.11901/1005.3093.2021.219
ARTICLES Current Issue | Archive | Adv Search |
Scratch Behavior of Materials under Progressive Load by Conical Indenter
LIU Ming(), WU Jianan
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
Cite this article: 

LIU Ming, WU Jianan. Scratch Behavior of Materials under Progressive Load by Conical Indenter. Chinese Journal of Materials Research, 2022, 36(3): 191-205.

Download:  HTML  PDF(10341KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The scratch characteristics in micron scale on 16 kinds of materials (2 kinds of glasses, 2 kinds of polymers, 4 kinds of ceramics, 4 kinds of metals and 4 kinds of metallic glasses) were assessed by means of Rockwell C diamond indentation with progressive load. The results show that these materials all have the maximum scratch retention rate (the ratio of residual indentation depth to indentation depth) related to elastic recovery, which can be used as the transition point of the apparent friction coefficient curve. The apparent friction coefficient of scratches is composed of adhesive friction coefficient and furrow friction coefficient. The three-dimensional mechanical contact model can be used to accurately characterize the friction coefficient except for metallic glass. The initial friction coefficient of the material is related to the Poisson's ratio. Polymeric materials (PC and PMMA) have special double scratch grooves due to stacking and sinking effects. The ratio of the hardness of scratched materials to the indentation hardness for 16 kinds of materials is 0.33~2.5, and there is a linear relationship between the scratch hardness and the volume modulus. The linear elastic fracture mechanics (LEFM) model and microscopic energy size effect (MESEL) model were used to calculate the fracture toughness of the material. The results show that: LEFM model, Akono's MESEL model and Hubler's MESEL model can accurately characterize the fracture toughness of materials with low fracture toughness (glasses, ceramics and polymers), while the deviation of calculation results for metal materials with high fracture toughness is large. Liu's MESEL model can be used to characterize the fracture toughness of materials with large fracture toughness (metallic materials and some metallic glasses). The fracture toughness of the material has a piecewise linear correlation with Poisson's ratio.

Key words:  measuring and analysis for materials      micro-scratch      Rockwell C indenter      progressive load      elastic-plastic deformation      fracture toughness     
Received:  06 April 2021     
ZTFLH:  TB302.5  
Fund: National Natural Science Foundation of China(51705082);Scientific Research Project of Science and Education Park Development Center of Fuzhou University, Jinjiang City(2019-JJFDKY-11)
About author:  LIU Ming, Tel:15606066237, E-mail: mingliu@fzu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.219     OR     https://www.cjmr.org/EN/Y2022/V36/I3/191

Fig.1  Schematic diagram of scratch test (a) main view of scratch test; (b) side view of scratch test; (c) geometry of indenter; (d) schematic diagram of pile-up and sinking-in in scratch groove
Materialsl/mmFmax/Nv/mm·min-1P/g
PMMA5201010
PC220210
Fused silica35650
S-L glass5101050
AZ312304200
Cu5255200
Si3N45510500
Al2O32104500
Si264500
SiC2104500
Mo4304500
W3303500
BMG-12204500
BMG-22204500
BMG-32204500
BMG-42204500
Table 1  Scratch test parameters of specimens (scratch length l, maximum scratch load Fmax, scratch speed v, indentation load P)
Materialsμ0μavgμcalHs/GPaK/GPaHi/GPav
PMMA0.090.390.520.265.93[46]0.260.33[46]
PC0.160.630.630.115.3[47]0.140.3[48]
Fused silica0.0480.060.085.5337.7[39]6.730.16[49]
S-L glass0.0570.080.096.1944.4[39]5.440.2[50]
Si3N40.0420.0580.0722.5239.9[51]13.60.25[52]
Al2O30.0450.0750.0722.9219[53]14.160.24[54]
Si0.0350.0370.041699[55]8.050.3[56]
SiC0.0450.080.071.78220[57]21.050.22[58]
AZ310.180.540.660.5134.9[59]0.70.35[60]
Mo0.0450.440.451.98NA2.77NA
W0.040.450.443.06NA4.83NA
Cu0.20.780.690.52NA1.520.343
BMG-10.090.260.525.1148.3[43]2.250.32[43]
BMG-20.120.430.575.247[43]2.260.314[43]
BMG-30.1240.350.573.3547.6[43]2.220.317[43]
BMG-40.160.3280.63353.1[43]2.330.328[43]
Table 2  The friction coefficient and elastic-plastic properties of the materials
Fig.2  Variation of penetration depth d, residual depth dr and scratch retention r=dr/d with applied load Fn
Fig.3  Relationship between the maximum scratch retention ratio rmax and the ratio of bulk modulus to indentation hardnes (K/Hi)
Fig.4  Variation of tangential force Ft and apparent friction coefficient μapp with applied load Fn
Fig.5  Relationship between Poisson's ratio v and initial friction coefficient μ0
Fig.6  Relationship between brittleness index Hi/Kc and Poisson's ratio v
MaterialsEq.(7)Eq.(10)Eq.(12)Eq.(13)SENB/CNB/IF method
PMMA1.421.391.072.161.5[61]
PC2.12.872.76.62.2[17]
Fused silica0.780.760.731.260.8[17]
S-L glass1.051.091.091.90.75[62]
Si3N41.371.321.322.31.26[40]
Al2O32.672.592.595.662.346[41]
Si1.181.21.22.081.28[42]
SiC2.862.912.926.22.8[63]
Cu8.68.328.2915.249.4[64]
BMG-353.453.055.335.6[43]
BMG-2744.117.34.2[43]
BMG-48.66.86.6811.976.5[43]
Mo11812.324.124.2[65]
W10.215.755.912.8814[66]
AZ313.7954.821415.9[44]
BMG-15.645.645.629.38.2[43]
Table 3  Fracture toughness calculated by different formulas (MPa·m1/2)
Fig.7  Optical image of scratch groove
Fig.8  Variation of theoretical calculated width wt, actual measured width wi and width retention wi/wt with penetration depth d
Fig.9  Variation of inner scratch width wp and outer scratch width wi of polymer with applied load Fn
Fig.10  Relationship between scratch hardness Hs and applied load Fn
Fig.11  Relationship between scratch hardness Hs and indentation hardness Hi
Fig.12  Relationship between scratch hardness Hs and bulk modulus K
Fig.13  Fracture toughness analysis based on LEFM Eq. (7)
Fig.14  Fracture toughness analysis based on Akono's MESEL model Eq. (10)
Fig.15  Fracture toughness analysis based on Hubler's MESEL model Eq. (12)
Fig.16  Fracture toughness analysis based on Liu's MESEL model Eq. (13)
Fig.17  Relationship between fracture toughness Kc and Poisson's ratio v
1 Sawamura S, Limbach R, Behrens H, et al. Lateral deformation and defect resistance of compacted silica glass: quantification of the scratching hardness of brittle glasses [J]. J. Non-Cryst. Solids, 2018, 481: 503
2 Hodge A M, Nieh T G. Evaluating abrasive wear of amorphous alloys using nanoscratch technique [J]. Intermetallics, 2004, 12: 741
3 Liu M, Yang S, Gao C. Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading [J]. Polym. Test, 2020, 90: 106643
4 Funkenbusch P D, Carreon A H. Material specific nanoscratch ploughing friction coefficient [J]. Tribol. Int., 2018, 126: 363
5 Akono A-T, Randall N X, Ulm F-J. Experimental determination of the fracture toughness via microscratch tests: application to polymers, ceramics, and metals [J]. J. Mater. Res., 2012, 27: 485
6 Hubler M H, Ulm F-J. Size-effect law for scratch tests of axisymmetric shape [J]. J. Eng. Mech., 2016, 142: 04016094
7 Akono A-T. Energetic size effect law at the microscopic scale: application to progressive-load scratch testing [J]. J. Nanom. Microm, 2016, 6: 04016001
8 Ghasemi R, Elmquist L, Ghassemali E, et al. Abrasion resistance of lamellar graphite iron: interaction between microstructure and abrasive particles [J]. Tribol. Int., 2018, 120: 465
9 Zakiev I, Gogotsi G A, Storchak M, et al. Glass fracture during micro-scratching [J]. Surfaces, 2020, 3: 211
10 Dong Z, Yuan S, Chenghui G, et al. Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter [J]. Wear, 2020, 444-445: 203158
11 Xu J, Ramamurty U, Ma E. The fracture toughness of bulk metallic glasses [J]. JOM, 2010, 62: 10
12 Guo H, Jiang C B, Yang B J, et al. On the fracture toughness of bulk metallic glasses under Berkovich nanoindentation [J]. J. Non-Cryst. Solids, 2018, 481: 321
13 Chenghui G, Dongyang H, Ming L. Characterization of fracture toughness of semiconductor materials by dimensional and glass indenters [J]. Chin. J. Theor. Appl. Mech., 2021, 53: 413
高诚辉, 侯冬杨, 刘明. 利用维式和玻式压头表征半导体材料断裂韧性 [J]. 力学学报, 2021, 53: 413
14 Sebastiani M, Johanns K E, Herbert E G, et al. Measurement of fracture toughness by nanoindentation methods: recent advances and future challenges [J]. Curr. Opin. Solid State Mater. Sci., 2015, 19: 324
15 Qiqiang D, Bin W, Peng Z, et al. Evaluation method of fracture toughness KIC of high strength steel with small size specimen [J]. Chin. J. Mater. Res., 2018, 32: 561
段启强, 王 斌, 张 鹏 等. 高强钢断裂韧性KIC的小尺寸试样评价方法 [J]. 材料研究学报, 2018, 32: 561
16 Lin J S, Zhou Y. Can scratch tests give fracture toughness? [J]. Eng. Fract. Mech., 2013, 109: 161
17 Ming L, Shuo L, Chenghui G. Testing fracture toughness of materials by micro-scratch of conical indenter [J]. Tribology, 2019, 39: 556
刘 明, 李 烁, 高诚辉. 利用圆锥压头微米划痕测试材料断裂韧性 [J]. 摩擦学学报, 2019, 39: 556
18 Ming L, Shuo L, Chenghui G. Study on failure mechanism of TiN coating by micro-scratch [J]. Acta Metrol Sin., 2020, 41: 696
刘 明, 李 烁, 高诚辉. 利用微米划痕研究TiN涂层的失效机理 [J]. 计量学报, 2020, 41: 696
19 Liu M, Zheng Q, Gao C. Sliding of a diamond sphere on fused silica under ramping load [J]. Mater. Today Commun., 2020, 25: 101684
20 Ming L, Shenghan Y, Chenghui G. Visual measurement of scratch shape surface based on level set method [J]. Chin. J. Sci. Instrum., 2020, 41: 184
刘 明, 杨胜寒, 高诚辉. 基于水平集方法的划痕形状表面视觉测量 [J]. 仪器仪表学报, 2020, 41: 184
21 Ming L, Qiang Z, Chenghui G. Characterization of mechanical properties of bulk metallic glass based on Knoop hardness [J]. Chin. J. Solid Mech., 2021, 1
刘 明, 郑 强, 高诚辉. 基于努氏硬度表征大块金属玻璃的力学性能 [J]. 固体力学学报, 2021, 1
22 Guangsheng S, Qiangqiang C, Yong X, et al. Mechanical properties and twinning mechanism of AZ31 magnesium alloy under variable path compression [J]. Chin. J. Nonferrous Met., 2016, 26: 1869
宋广胜, 陈强强, 徐 勇 等. AZ31镁合金变路径压缩的力学性能和孪晶机制 [J]. 中国有色金属学报, 2016, 26: 1869
23 Liu H, Zhao M, Lu C, et al. Characterization on the yield stress and interfacial coefficient of friction of glasses from scratch tests [J]. Ceram. Int., 2020, 46: 6060
24 Feng B, Chen Z. Tribology behavior during indentation and scratch of thin films on substrates: effects of plastic friction [J]. Aip Adv., 2015, 5: 583
25 Lafaye S, Gauthier C, Schirrer R. A surface flow line model of a scratching tip: apparent and true local friction coefficients [J]. Tribol. Int., 2004, 38: 113
26 Ming L, Fuwen Y, Chenghui G. Effect of normal load on micro-scratch test of red copper [J]. Acta Metrol Sin., 2020, 41: 1095
刘 明, 严富文, 高诚辉. 法向载荷对紫铜的微米划痕测试的影响 [J]. 计量学报, 2020, 41: 1095
27 Jiang C, Jiang H, Zhang J, et al. Analytical model of friction behavior during polymer scratching with conical tip [J]. Friction, 2019, 7: 466
28 Liao Z, Hua N, Chen W, et al. Correlations between the wear resistance and properties of bulk metallic glasses [J]. Intermetallics, 2018, 93: 290
29 Wei H W. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
30 Hill A J, Agrawal C M. Positron lifetime spectroscopy characterization of thermal history effects on polycarbonate [J]. J. Mater. Sci., 1990, 25: 5036
31 Bauwens-Crowet C, Bauwens J C. The mechanism of creep behaviour in glassy polymers [J]. J. Mater. Sci., 1975, 10: 1779
32 Houérou V L, Sangleboeuf J C, Dériano S, et al. Surface damage of soda-lime-silica glasses: indentation scratch behavior [J]. J. Non-Cryst. Solids, 2003, 316: 54
33 Jiang H, Lim G T, Reddy J N, et al. Finite element method parametric study on scratch behavior of polymers [J]. J. Polym. Sci. Part B: Polym Phys, 2010, 45: 1435
34 Shigeki S, Lothar W. Scratch hardness of glass [J]. Phys. Rev. Mater., 2018, 2: 92601
35 Jiangbo S, Shigeki S, Lothar W. Scratch hardness of rare-earth substituted calcium aluminosilicate glasses [J]. J. Non-Cryst. Solids: X, 2019, 1: 100010
36 Zhu R, Li Y, Zhang X, et al. Strain-rate sensitivity of scratch hardness and deformation mechanism in nanocrystalline Ni under micro-scratch testing [J]. J. Mater. Sci., 2016, 51: 5889
37 Sinha S K, Lim D B J. Effects of normal load on single-pass scratching of polymer surfaces [J]. Wear, 2006, 260: 751
38 Briscoe B J, Evans P D, Biswas S K, et al. The hardnesses of poly(methylmethacrylate) [J]. Tribol. Int., 1996, 29: 93
39 Sawamura S, Limbach R, Wilhelmy S, et al. Scratch‐induced yielding and ductile fracture in silicate glasses probed by nanoindentation [J]. J. Am. Ceram. Soc., 2019, 102: 7299
40 Meng C, Haiyun J, Xide P, et al. A new method for evaluating fracture toughness of porous Si3N4 ceramics -- uniaxial compression test [J]. Rare Met. Mater. Eng., 2017, 46: 2883
陈 猛, 金海云, 潘希德 等. 评价多孔Si3N4陶瓷断裂韧性的新方法——单向压缩试验 [J]. 稀有金属材料与工程, 2017, 46: 2883
41 Youfu W, Tiancun S, Ju H. Fracture properties of single crystal and polycrystalline alumina ceramics and ceramic matrix composites [J]. J. Compos. Mater., 1993, 10: 93
王幼复, 三田村, 好 矩. 单晶与多晶氧化铝陶瓷材料断裂性能与陶瓷基复合材料 [J]. 复合材料学报, 1993, 10: 93
42 Shigeki, Nakao, Taeko, et al. Effect of temperature on fracture toughness in a single-crystal-silicon film and transition in its fracture mode [J]. J. Nanom. Microm, 2008, 18: 015026
43 Wang S G, Shi L L, Xu J. Mg-based bulk metallic glasses: elastic properties and their correlations with toughness and glass transition temperature [J]. J. Mater. Res., 2011, 26: 923
44 Somekawa H, Mukai T. Effect of texture on fracture toughness in extruded AZ31 magnesium alloy [J]. Scr. Mater., 2005, 53: 541
45 Cao J, Li F. Critical Poisson's ratio between toughness and brittleness [J]. Philos. Mag. Lett., 2016, 96: 1
46 Weishaupt K, Krbecek H, Pietralla M, et al. Pressure dependence of the elastic constants of poly(methyl methacrylate) [J]. Polymer, 1995, 36: 3267
47 Weishaupt K, Pietralla M. The elastic behaviour of polycarbonate in the glassy state determined by Brillouin scattering [J]. J. Mater. Sci., 1995, 30: 5457
48 Fang T H, Chang W J. Nanoindentation characteristics on polycarbonate polymer film [J]. Microelectron. J., 2004, 35: 595
49 Zheng L, Schmid A W, Lambropoulos J C. Surface effects on Young's modulus and hardness of fused silica by nanoindentation study [J]. J. Mater. Sci., 2007, 42: 191
50 Yan Q, Yiwang B, Xiaogen L, et al. Effect of tempering on elastic properties of soda lime silica glass [J]. Rare Met. Mater. Eng., 2009, 38: 1133
邱 岩, 包亦望, 刘小根 等. 钢化对钠钙硅玻璃弹性性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 1133
51 Yu B H, Chen D, Jia Y L. Pseudo-potential calculations of structural, elastic and thermal properties of Si3N4 [J]. Adv. Mater. Res., 2011, 217: 1619
52 Yue J, Li G. Microstructure and mechanical properties of TiAlN/Si3N4 nano-multilayers synthesized by reactive magnetron sputtering [J]. J. Alloys Compd., 2009, 481: 710
53 Gutiérrez G, Taga A, Johansson B. Theoretical structure determination of γ-Al2O3 [J]. Phys. Rev. B, 2001, 65: 012101
54 Liu X, Haimi E, Hannula S P, et al. On the reliability of nanoindentation hardness of Al2O3 films grown on Si-wafer by atomic layer deposition [J]. J. Vac Sci. Technol. A, 2014, 32: 01A116
55 Madelung O, Rössler U, Schulz M. Silicon (Si) Young's modulus, torsion modulus, bulk modulus (various structures) [M]. Berlin: Springer-Verlag, 2001
56 Mishra P, Bhattacharyya S R, Ghose D. Nanoindentation on single-crystal Si modified by 100 keV Cr+ implantation [J]. Nucl. Instrum. Methods Phys. Res., Sect. B, 2008, 266: 1629
57 Zhang X D, Cui S X, Shi H F. Theoretical study of thermodynamics properties and bulk modulus of SiC under high pressure and temperature [J]. Chin.phys.lett, 2014, 31: 127
58 Evans A G, Charles E A. Fracture toughness determinations by indentation [J]. J. Am. Ceram. Soc., 1976, 59: 371
59 Janovská M, Minárik P, Sedlák P, et al. Elasticity and internal friction of magnesium alloys at room and elevated temperatures [J]. J. Mater. Sci., 2018, 53: 8545
60 Kun Y, Xiaoyan W, Zhiyong C, et al. Finite element simulation of hot rolling blooming deformation behavior of AZ31 magnesium alloy [J]. J. Cent. S. Un. (Sci. Technol.), 2009, 40: 1535
余 琨, 王晓艳, 蔡志勇 等. AZ31镁合金热轧开坯变形行为的有限元模拟 [J]. 中南大学学报(自然科学版), 2009, 40: 1535
61 Johnson J A, Jones D W. The mechanical properties of PMMA and its copolymers with ethyl methacrylate and butyl methacrylate [J]. J. Mater. Sci., 1994, 29: 870
62 Gong J, Chen Y, Li C. Statistical analysis of fracture toughness of soda-lime glass determined by indentation [J]. J. Non-Cryst. Solids, 2001, 279: 219
63 Medvedovski E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1 [J]. Ceram. Int., 2010, 36: 2103
64 Qin E W, Lu L, Tao N R, et al. Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles [J]. Acta Mater., 2009, 57: 6215
65 Sturm D, Heilmaier M, Schneibel J H, et al. The influence of silicon on the strength and fracture toughness of molybdenum [J]. Mater. Sci. Eng.: A, 2007, 463: 107
66 Mutoh Y, Ichikawa K, Nagata K, et al. Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures [J]. J. Mater. Sci., 1995, 30: 770
[1] Qiqiang DUAN, Bin WANG, Peng ZHANG, Ruitao QU, Zhefeng ZHANG. Small Size Specimen Evaluation Method for Fracture Toughness KIC of High Strength Steel[J]. 材料研究学报, 2018, 32(8): 561-566.
[2] Jin ZHANG, Mengyu CHAI, Jinghai XIANG, Quan DUAN, Lichan LI. Characteristics of Acoustic Emission Signal from Fracture Process of 316LN Stainless Steel[J]. 材料研究学报, 2018, 32(6): 415-422.
[3] Yemao LU, Yilong LIANG, Shaolei LONG, Cunhong YIN, Ming YANG. Effect of the Martensite Lath on Toughness of 20CrNi2Mo Steel[J]. 材料研究学报, 2018, 32(4): 290-300.
[4] LIANG Enquan, HUANG Sensen, MA Yingjie, ZHANG Ren, LEI Jiafeng, LIU Yang. The Influence of Fe on the Mechanical Properties of Ti-6Al-4V ELI Alloy[J]. 材料研究学报, 2016, 30(4): 299-306.
[5] WANG Jing, LUAN Chunbo. Effect of Hydrogen Sulfide Corrosion on Fracture Toughness of X80 Pipeline Steel[J]. 材料研究学报, 2016, 30(3): 179-185.
[6] DENG Yunlai, WANG Yafeng, LIN Huaqiang, YE Lingying, LIU Shengdan, TAN Qian, ZHANG Xinming. Effect of Extrusion Temperature on Strength and Fracture Toughness of an Al-Zn-Mg Alloy[J]. 材料研究学报, 2016, 30(2): 87-94.
[7] Song ZHANG,Xiping GUO. Effect of Cr Addition on the Microstructure and Room-temperature Fracture Toughness of Nb-Si Based Ultra-high Temperature Alloys[J]. 材料研究学报, 2015, 29(9): 641-648.
[8] Chao QIN,Guoqing GOU,Xiaoli CHE,Hui CHEN,Jia CHEN. Effect of Alloying Elements on Mechanical Property and Fracture Toughness of A7N01S-T5 Aluminum Alloy[J]. 材料研究学报, 2015, 29(7): 535-541.
[9] Shou MA,Jianchun GUO. Preparation and Properties of Organoclay/Polyethersulfone/Epoxy Hybrid Nanocomposites[J]. 材料研究学报, 2014, 28(10): 794-800.
[10] WANG Yuanqing,LIU Xiyue,SHI Yongjiu. The Fracture Toughness of Butt Weld at Low Temperature of 960 MPa High-strength Steel[J]. 材料研究学报, 2013, 27(3): 237-246.
[11] WANG Fuqiang WANG Lei LIU Yang FENG Hui WANG Peng. Fracture Toughness and Fracture Behavior of GH690 Alloy at Different Temperatures[J]. 材料研究学报, 2010, 24(3): 299-304.
[12] YAO Zhigang ZHU Xiaofei ZHANG Guangping. Comparison of indentation-induced deformation and fracture of several kinds of semiconductor single crystals[J]. 材料研究学报, 2009, 23(2): 180-186.
[13] DENG Jianxin;AI Xing(Shandong University of Technology)(Correspondent:DENG Jianxin;Associate Professor;Department of Mechanical Engineering;Shandong University ofTechnology;Jinan 250061). EFFECT OF THE SiC_W ON THE TOUGHENING BEHAVIOR OF TiB_2 / 25SiC_W CERAMIC COMPOSITE AT ELEVATED TEMPERATURE[J]. 材料研究学报, 1996, 10(3): 319-323.
[14] SHI Jianlin; LI Baoshun; LU Zhenglan; HUANG Xiaoxian; YAN Dongsheng (Shanghai Institute if Ceramics). CO-RELATIONSHIP BETWEEN SINTERED DENSITY, FRACTURE-INDUCED PHASE TRANSFORMATION AND THE MECHANICAL PROPERTIES OF 3Y-TZP CERAMICS[J]. 材料研究学报, 1996, 10(1): 51-56.
[15] WANG Lingsen; LUO Xiong; CHEN Xi;LIU Ruoyu (Central-South University of Technology). STUDY ON INTERFACE BOND STRENGTH OF COMPOSITES AND ITS TESTING[J]. 材料研究学报, 1994, 8(4): 372-377.
No Suggested Reading articles found!