|
|
Scratch Behavior of Materials under Progressive Load by Conical Indenter |
LIU Ming( ), WU Jianan |
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China |
|
Cite this article:
LIU Ming, WU Jianan. Scratch Behavior of Materials under Progressive Load by Conical Indenter. Chinese Journal of Materials Research, 2022, 36(3): 191-205.
|
Abstract The scratch characteristics in micron scale on 16 kinds of materials (2 kinds of glasses, 2 kinds of polymers, 4 kinds of ceramics, 4 kinds of metals and 4 kinds of metallic glasses) were assessed by means of Rockwell C diamond indentation with progressive load. The results show that these materials all have the maximum scratch retention rate (the ratio of residual indentation depth to indentation depth) related to elastic recovery, which can be used as the transition point of the apparent friction coefficient curve. The apparent friction coefficient of scratches is composed of adhesive friction coefficient and furrow friction coefficient. The three-dimensional mechanical contact model can be used to accurately characterize the friction coefficient except for metallic glass. The initial friction coefficient of the material is related to the Poisson's ratio. Polymeric materials (PC and PMMA) have special double scratch grooves due to stacking and sinking effects. The ratio of the hardness of scratched materials to the indentation hardness for 16 kinds of materials is 0.33~2.5, and there is a linear relationship between the scratch hardness and the volume modulus. The linear elastic fracture mechanics (LEFM) model and microscopic energy size effect (MESEL) model were used to calculate the fracture toughness of the material. The results show that: LEFM model, Akono's MESEL model and Hubler's MESEL model can accurately characterize the fracture toughness of materials with low fracture toughness (glasses, ceramics and polymers), while the deviation of calculation results for metal materials with high fracture toughness is large. Liu's MESEL model can be used to characterize the fracture toughness of materials with large fracture toughness (metallic materials and some metallic glasses). The fracture toughness of the material has a piecewise linear correlation with Poisson's ratio.
|
Received: 06 April 2021
|
|
Fund: National Natural Science Foundation of China(51705082);Scientific Research Project of Science and Education Park Development Center of Fuzhou University, Jinjiang City(2019-JJFDKY-11) |
About author: LIU Ming, Tel:15606066237, E-mail: mingliu@fzu.edu.cn
|
1 |
Sawamura S, Limbach R, Behrens H, et al. Lateral deformation and defect resistance of compacted silica glass: quantification of the scratching hardness of brittle glasses [J]. J. Non-Cryst. Solids, 2018, 481: 503
|
2 |
Hodge A M, Nieh T G. Evaluating abrasive wear of amorphous alloys using nanoscratch technique [J]. Intermetallics, 2004, 12: 741
|
3 |
Liu M, Yang S, Gao C. Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading [J]. Polym. Test, 2020, 90: 106643
|
4 |
Funkenbusch P D, Carreon A H. Material specific nanoscratch ploughing friction coefficient [J]. Tribol. Int., 2018, 126: 363
|
5 |
Akono A-T, Randall N X, Ulm F-J. Experimental determination of the fracture toughness via microscratch tests: application to polymers, ceramics, and metals [J]. J. Mater. Res., 2012, 27: 485
|
6 |
Hubler M H, Ulm F-J. Size-effect law for scratch tests of axisymmetric shape [J]. J. Eng. Mech., 2016, 142: 04016094
|
7 |
Akono A-T. Energetic size effect law at the microscopic scale: application to progressive-load scratch testing [J]. J. Nanom. Microm, 2016, 6: 04016001
|
8 |
Ghasemi R, Elmquist L, Ghassemali E, et al. Abrasion resistance of lamellar graphite iron: interaction between microstructure and abrasive particles [J]. Tribol. Int., 2018, 120: 465
|
9 |
Zakiev I, Gogotsi G A, Storchak M, et al. Glass fracture during micro-scratching [J]. Surfaces, 2020, 3: 211
|
10 |
Dong Z, Yuan S, Chenghui G, et al. Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter [J]. Wear, 2020, 444-445: 203158
|
11 |
Xu J, Ramamurty U, Ma E. The fracture toughness of bulk metallic glasses [J]. JOM, 2010, 62: 10
|
12 |
Guo H, Jiang C B, Yang B J, et al. On the fracture toughness of bulk metallic glasses under Berkovich nanoindentation [J]. J. Non-Cryst. Solids, 2018, 481: 321
|
13 |
Chenghui G, Dongyang H, Ming L. Characterization of fracture toughness of semiconductor materials by dimensional and glass indenters [J]. Chin. J. Theor. Appl. Mech., 2021, 53: 413
|
|
高诚辉, 侯冬杨, 刘明. 利用维式和玻式压头表征半导体材料断裂韧性 [J]. 力学学报, 2021, 53: 413
|
14 |
Sebastiani M, Johanns K E, Herbert E G, et al. Measurement of fracture toughness by nanoindentation methods: recent advances and future challenges [J]. Curr. Opin. Solid State Mater. Sci., 2015, 19: 324
|
15 |
Qiqiang D, Bin W, Peng Z, et al. Evaluation method of fracture toughness KIC of high strength steel with small size specimen [J]. Chin. J. Mater. Res., 2018, 32: 561
|
|
段启强, 王 斌, 张 鹏 等. 高强钢断裂韧性KIC的小尺寸试样评价方法 [J]. 材料研究学报, 2018, 32: 561
|
16 |
Lin J S, Zhou Y. Can scratch tests give fracture toughness? [J]. Eng. Fract. Mech., 2013, 109: 161
|
17 |
Ming L, Shuo L, Chenghui G. Testing fracture toughness of materials by micro-scratch of conical indenter [J]. Tribology, 2019, 39: 556
|
|
刘 明, 李 烁, 高诚辉. 利用圆锥压头微米划痕测试材料断裂韧性 [J]. 摩擦学学报, 2019, 39: 556
|
18 |
Ming L, Shuo L, Chenghui G. Study on failure mechanism of TiN coating by micro-scratch [J]. Acta Metrol Sin., 2020, 41: 696
|
|
刘 明, 李 烁, 高诚辉. 利用微米划痕研究TiN涂层的失效机理 [J]. 计量学报, 2020, 41: 696
|
19 |
Liu M, Zheng Q, Gao C. Sliding of a diamond sphere on fused silica under ramping load [J]. Mater. Today Commun., 2020, 25: 101684
|
20 |
Ming L, Shenghan Y, Chenghui G. Visual measurement of scratch shape surface based on level set method [J]. Chin. J. Sci. Instrum., 2020, 41: 184
|
|
刘 明, 杨胜寒, 高诚辉. 基于水平集方法的划痕形状表面视觉测量 [J]. 仪器仪表学报, 2020, 41: 184
|
21 |
Ming L, Qiang Z, Chenghui G. Characterization of mechanical properties of bulk metallic glass based on Knoop hardness [J]. Chin. J. Solid Mech., 2021, 1
|
|
刘 明, 郑 强, 高诚辉. 基于努氏硬度表征大块金属玻璃的力学性能 [J]. 固体力学学报, 2021, 1
|
22 |
Guangsheng S, Qiangqiang C, Yong X, et al. Mechanical properties and twinning mechanism of AZ31 magnesium alloy under variable path compression [J]. Chin. J. Nonferrous Met., 2016, 26: 1869
|
|
宋广胜, 陈强强, 徐 勇 等. AZ31镁合金变路径压缩的力学性能和孪晶机制 [J]. 中国有色金属学报, 2016, 26: 1869
|
23 |
Liu H, Zhao M, Lu C, et al. Characterization on the yield stress and interfacial coefficient of friction of glasses from scratch tests [J]. Ceram. Int., 2020, 46: 6060
|
24 |
Feng B, Chen Z. Tribology behavior during indentation and scratch of thin films on substrates: effects of plastic friction [J]. Aip Adv., 2015, 5: 583
|
25 |
Lafaye S, Gauthier C, Schirrer R. A surface flow line model of a scratching tip: apparent and true local friction coefficients [J]. Tribol. Int., 2004, 38: 113
|
26 |
Ming L, Fuwen Y, Chenghui G. Effect of normal load on micro-scratch test of red copper [J]. Acta Metrol Sin., 2020, 41: 1095
|
|
刘 明, 严富文, 高诚辉. 法向载荷对紫铜的微米划痕测试的影响 [J]. 计量学报, 2020, 41: 1095
|
27 |
Jiang C, Jiang H, Zhang J, et al. Analytical model of friction behavior during polymer scratching with conical tip [J]. Friction, 2019, 7: 466
|
28 |
Liao Z, Hua N, Chen W, et al. Correlations between the wear resistance and properties of bulk metallic glasses [J]. Intermetallics, 2018, 93: 290
|
29 |
Wei H W. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
|
30 |
Hill A J, Agrawal C M. Positron lifetime spectroscopy characterization of thermal history effects on polycarbonate [J]. J. Mater. Sci., 1990, 25: 5036
|
31 |
Bauwens-Crowet C, Bauwens J C. The mechanism of creep behaviour in glassy polymers [J]. J. Mater. Sci., 1975, 10: 1779
|
32 |
Houérou V L, Sangleboeuf J C, Dériano S, et al. Surface damage of soda-lime-silica glasses: indentation scratch behavior [J]. J. Non-Cryst. Solids, 2003, 316: 54
|
33 |
Jiang H, Lim G T, Reddy J N, et al. Finite element method parametric study on scratch behavior of polymers [J]. J. Polym. Sci. Part B: Polym Phys, 2010, 45: 1435
|
34 |
Shigeki S, Lothar W. Scratch hardness of glass [J]. Phys. Rev. Mater., 2018, 2: 92601
|
35 |
Jiangbo S, Shigeki S, Lothar W. Scratch hardness of rare-earth substituted calcium aluminosilicate glasses [J]. J. Non-Cryst. Solids: X, 2019, 1: 100010
|
36 |
Zhu R, Li Y, Zhang X, et al. Strain-rate sensitivity of scratch hardness and deformation mechanism in nanocrystalline Ni under micro-scratch testing [J]. J. Mater. Sci., 2016, 51: 5889
|
37 |
Sinha S K, Lim D B J. Effects of normal load on single-pass scratching of polymer surfaces [J]. Wear, 2006, 260: 751
|
38 |
Briscoe B J, Evans P D, Biswas S K, et al. The hardnesses of poly(methylmethacrylate) [J]. Tribol. Int., 1996, 29: 93
|
39 |
Sawamura S, Limbach R, Wilhelmy S, et al. Scratch‐induced yielding and ductile fracture in silicate glasses probed by nanoindentation [J]. J. Am. Ceram. Soc., 2019, 102: 7299
|
40 |
Meng C, Haiyun J, Xide P, et al. A new method for evaluating fracture toughness of porous Si3N4 ceramics -- uniaxial compression test [J]. Rare Met. Mater. Eng., 2017, 46: 2883
|
|
陈 猛, 金海云, 潘希德 等. 评价多孔Si3N4陶瓷断裂韧性的新方法——单向压缩试验 [J]. 稀有金属材料与工程, 2017, 46: 2883
|
41 |
Youfu W, Tiancun S, Ju H. Fracture properties of single crystal and polycrystalline alumina ceramics and ceramic matrix composites [J]. J. Compos. Mater., 1993, 10: 93
|
|
王幼复, 三田村, 好 矩. 单晶与多晶氧化铝陶瓷材料断裂性能与陶瓷基复合材料 [J]. 复合材料学报, 1993, 10: 93
|
42 |
Shigeki, Nakao, Taeko, et al. Effect of temperature on fracture toughness in a single-crystal-silicon film and transition in its fracture mode [J]. J. Nanom. Microm, 2008, 18: 015026
|
43 |
Wang S G, Shi L L, Xu J. Mg-based bulk metallic glasses: elastic properties and their correlations with toughness and glass transition temperature [J]. J. Mater. Res., 2011, 26: 923
|
44 |
Somekawa H, Mukai T. Effect of texture on fracture toughness in extruded AZ31 magnesium alloy [J]. Scr. Mater., 2005, 53: 541
|
45 |
Cao J, Li F. Critical Poisson's ratio between toughness and brittleness [J]. Philos. Mag. Lett., 2016, 96: 1
|
46 |
Weishaupt K, Krbecek H, Pietralla M, et al. Pressure dependence of the elastic constants of poly(methyl methacrylate) [J]. Polymer, 1995, 36: 3267
|
47 |
Weishaupt K, Pietralla M. The elastic behaviour of polycarbonate in the glassy state determined by Brillouin scattering [J]. J. Mater. Sci., 1995, 30: 5457
|
48 |
Fang T H, Chang W J. Nanoindentation characteristics on polycarbonate polymer film [J]. Microelectron. J., 2004, 35: 595
|
49 |
Zheng L, Schmid A W, Lambropoulos J C. Surface effects on Young's modulus and hardness of fused silica by nanoindentation study [J]. J. Mater. Sci., 2007, 42: 191
|
50 |
Yan Q, Yiwang B, Xiaogen L, et al. Effect of tempering on elastic properties of soda lime silica glass [J]. Rare Met. Mater. Eng., 2009, 38: 1133
|
|
邱 岩, 包亦望, 刘小根 等. 钢化对钠钙硅玻璃弹性性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 1133
|
51 |
Yu B H, Chen D, Jia Y L. Pseudo-potential calculations of structural, elastic and thermal properties of Si3N4 [J]. Adv. Mater. Res., 2011, 217: 1619
|
52 |
Yue J, Li G. Microstructure and mechanical properties of TiAlN/Si3N4 nano-multilayers synthesized by reactive magnetron sputtering [J]. J. Alloys Compd., 2009, 481: 710
|
53 |
Gutiérrez G, Taga A, Johansson B. Theoretical structure determination of γ-Al2O3 [J]. Phys. Rev. B, 2001, 65: 012101
|
54 |
Liu X, Haimi E, Hannula S P, et al. On the reliability of nanoindentation hardness of Al2O3 films grown on Si-wafer by atomic layer deposition [J]. J. Vac Sci. Technol. A, 2014, 32: 01A116
|
55 |
Madelung O, Rössler U, Schulz M. Silicon (Si) Young's modulus, torsion modulus, bulk modulus (various structures) [M]. Berlin: Springer-Verlag, 2001
|
56 |
Mishra P, Bhattacharyya S R, Ghose D. Nanoindentation on single-crystal Si modified by 100 keV Cr+ implantation [J]. Nucl. Instrum. Methods Phys. Res., Sect. B, 2008, 266: 1629
|
57 |
Zhang X D, Cui S X, Shi H F. Theoretical study of thermodynamics properties and bulk modulus of SiC under high pressure and temperature [J]. Chin.phys.lett, 2014, 31: 127
|
58 |
Evans A G, Charles E A. Fracture toughness determinations by indentation [J]. J. Am. Ceram. Soc., 1976, 59: 371
|
59 |
Janovská M, Minárik P, Sedlák P, et al. Elasticity and internal friction of magnesium alloys at room and elevated temperatures [J]. J. Mater. Sci., 2018, 53: 8545
|
60 |
Kun Y, Xiaoyan W, Zhiyong C, et al. Finite element simulation of hot rolling blooming deformation behavior of AZ31 magnesium alloy [J]. J. Cent. S. Un. (Sci. Technol.), 2009, 40: 1535
|
|
余 琨, 王晓艳, 蔡志勇 等. AZ31镁合金热轧开坯变形行为的有限元模拟 [J]. 中南大学学报(自然科学版), 2009, 40: 1535
|
61 |
Johnson J A, Jones D W. The mechanical properties of PMMA and its copolymers with ethyl methacrylate and butyl methacrylate [J]. J. Mater. Sci., 1994, 29: 870
|
62 |
Gong J, Chen Y, Li C. Statistical analysis of fracture toughness of soda-lime glass determined by indentation [J]. J. Non-Cryst. Solids, 2001, 279: 219
|
63 |
Medvedovski E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1 [J]. Ceram. Int., 2010, 36: 2103
|
64 |
Qin E W, Lu L, Tao N R, et al. Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles [J]. Acta Mater., 2009, 57: 6215
|
65 |
Sturm D, Heilmaier M, Schneibel J H, et al. The influence of silicon on the strength and fracture toughness of molybdenum [J]. Mater. Sci. Eng.: A, 2007, 463: 107
|
66 |
Mutoh Y, Ichikawa K, Nagata K, et al. Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures [J]. J. Mater. Sci., 1995, 30: 770
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|