Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (1): 49-56    DOI: 10.11901/1005.3093.2016.170
Orginal Article Current Issue | Archive | Adv Search |
Initial Corrosion Behavior in Different Atmospheric Environments of 6061Al Alloy Anodized in Boron-sulfuric Acid Solution
Shasha WANG1,Lang YANG1,Yunhua HUANG1,2(),Kui XIAO1,2,Xiaogang LI1,2
1 Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory for Corrosion and Protection (MOE), Beijing 100083, China
Cite this article: 

Shasha WANG,Lang YANG,Yunhua HUANG,Kui XIAO,Xiaogang LI. Initial Corrosion Behavior in Different Atmospheric Environments of 6061Al Alloy Anodized in Boron-sulfuric Acid Solution. Chinese Journal of Materials Research, 2017, 31(1): 49-56.

Download:  HTML  PDF(8968KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The initial corrosion behavior and mechanism of 6061 aluminum alloy anodized in a solution of mixed boron-sulfuric acidswere studiedthrough outdoor exposure tests in industry-marine and northernsemi-ruralatmospheric environments at Qingdao and Beijing respectively by means of weight-loss measurement, mechanical property testand morphology observation of surface andfracture surface. The results show that after exposed in the industry-marine and the northernsemi-ruralatmospheric environment for one year, the average corrosion rates of the anodized alloy decrease 43.3% and 10.1%, respectively in comparison to the naked alloy, thus the anodic treatment impedes the corrosion and this effect is much efficient in the severer environment. The break elongation of the naked alloy exposed in industry-marine environment for one year decreases 35% in comparison with the original one, but the decrease for the anodized alloy is 23%. Therefore, the anodization with boron-sulfuric acid is not enough to prevent the plasticity deterioration of the alloy; correspondingly, ductile fracture of the surface layer has changed to brittle cleavage. Nevertheless, the above results provide an important reference to the corrosion and protection of aviation materials.

Key words:  materials failure and protection      pitting corrosion      anodizingin boron-sulfuric acid      6061 aluminum alloy      atmospheric corrosion     
Received:  31 March 2016     
Fund: Supported by National Basic Research Program of China (No.2014CB643300), National Natural Science Foundation of China (No.51471033) and National Environmental Corrosion Platform

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.170     OR     https://www.cjmr.org/EN/Y2017/V31/I1/49

Mg Si Cu Cr Femax Mnmax Znmax Timax Al
0.8~1.2 0.4~0.8 0.15~0.4 0.04~0.35 0.7 0.15 0.25 0.15 Bal.
Table 1  Chemical composition of 6061 aluminum alloy (%, mass fraction)
Experiment stations Climate Weather factor
(annual average)
Corrosion concentration
(mg/100 cm2d)
Qingdao
36.05°N,120.29°E
Altitude: 12 m
North temperate monsoon climate and oceanclimate Temperature: 12.7℃
Rainfall: 955.2 mm
Relative Humidity: 74.6%
H2S: 0.0607
Sea-salt particles: 0.5606
Sulfation rate: 0.3287
Beijing
39.98°N,116.26°E
Altitude: 73 m
Warm temperate and semi - humid,semi-rural atmospheric Temperature:13.8℃
Rainfall: 388.8 mm
Relative Humidity: 44.6%
H2S: 0.0575
Sea-salt particles: 0.0313
Sulfation rate: 0.2869
Table 2  Experimental conditions in Qingdao and Beijing experiment stations (Year 2014)
City Sample Exposure duration Average corrosion rate 10-3mm/a
Naked six months 7.333
Qingdao Naked alloy one year 5.851
Anodized alloy one year 3.312
Naked six months 5.139
Beijing Naked alloy one year 2.604
Anodized alloy one year 2.342
Table 3  The average corrosion rates of various samples
Fig.1  Macro corrosion morphologies of various samples before removing the rusts. (a) initialalloy, nakedalloy exposed for six months in (b) Qingdao and (c) Beijing; naked alloy exposed for one year in (d) qingdao and (e) Beijing; anodized alloy exposed for one year in (f) Qingdao and (g) Beijing
Fig.2  Macro corrosion morphologies of various samples before removing the rusts. (a) initialalloy, nakedalloy exposed for six months in (b) Qingdao and (c) Beijing; naked alloy exposed for one yearin (d) ingdao and (e) Beijing; anodized alloy exposed for one year in (f), Qingdao and (g) Beijing
Fig.3  Cross sections and EDS analysis of the samples exposed in (a) Qingdao and (b) Beijing
Fig.4  SEM images of fractures (a,d,g),fracture edges (b,e,h) and centers(c,f,i). Naked alloy exposed for (a,b,c) six month,and (d,e,f) one year; (g,h,i) anodized alloy exposed for one year in Qingdao
Fig.5  SEM images of fractures (a,d,g),fracture edges (b,e,h) and centers (c,f,i). Naked alloy exposed for (a,b,c) six month,and (d,e,f) one year; (g,h,i) anodized alloy exposed for one year in Beijing
City Sample σP0.2/MPa σb/MPa δ/%
Naked alloy 265 295 19.0
Anodized alloy 268 300 18.9
Naked alloy/six months 259 291 16.1
Qingdao Naked alloy/one year 254 289 12.3
Anodized /one year 253 283 14.6
Naked alloy/six months 265 295 18.2
Beijing Naked alloy/one year 264 294 18.0
Anodized /one year 260 291 18.8
Table 4  Mechanical properties data of 6061 aluminum alloy samples
[1] Zaid B, Saidi D, Benzaid A, et al.Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy[J]. Corros. Sci., 2008, 50(7): 1841
[2] Feng C, Huang Y H, Shen Y F, et al.Galvanic corrosion and protection of 6061 aluminum alloy coupled with 30CrMnSiA steel in simulative industry-marine atmospheric environment[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(6): 1417
[2] (冯驰, 黄运华, 申玉芳等. 6061 铝合金与30CrMnSiA 结构钢在模拟工业-海洋大气环境下的电偶腐蚀防护[J]. 中国有色金属学报, 2015, 25(6): 1417)
[3] Critchlow G W, Yendall K A, Bahrani D, et al.Strategies for the replacement of chromic acid anodising for the structural bonding of aluminum alloys[J]. Int. J. Adhes. Adhes., 2006, 26(6): 419
[4] Liu J H, Li Y G, Yu M, et al.Effects of ammonium adipate on sulphuric acid anodizing of 7075-T6 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(1): 324
[4] (刘建华, 李永星, 于美等. 己二酸铵对7075-T6 铝合金硫酸阳极氧化的影响[J].中国有色金属学报, 2012, 22(1): 324)
[5] Wang S X, Zhao Q, Du N, et al.Sealing effect of cerium salt on boric-sulfuric acid anodic film of aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(4): 1132
[5] (王帅星, 赵晴, 杜楠等. 铈盐对铝合金硼酸-硫酸阳极氧化膜的封闭效应[J]. 中国有色金属学报, 2012, 22(4): 1132)
[6] Li S M, Yao W H, Liu J H, et al.Study on anodic oxidation process and property of composite film formed on Ti-10V-2Fe-3Al alloy in SiC nanoparticle suspension[J]. Surf. Coat. Technol., 2015, 277: 234
[7] Yoganandan G, Balaraju J N, Christopher H C L, et al. Electrochemical and long term corrosion behavior of Mn and Mo oxyanions sealed anodic oxide surface developed on aerospace aluminum alloy (AA2024)[J]. Surf. Coat. Technol., 2016, 288: 115
[8] Zhang D Y, Dong G N, Chen Y.J., et al. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties[J]. Appl. Surf. Sci., 2014, 290: 466
[9] Kong D J, Wang J C, Liu H, Surface-interface structures and characteristics of anodic oxidation film on 7475 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(7): 174
[9] (孔德军, 王进春, 刘浩. 7475铝合金阳极氧化膜表面-界面组织与特征[J]. 中国有色金属学报, 2014, 24(7): 1744)
[10] Zhang P.The Study on Correlation Between Microstructure and Microhardness of Anodic Films on Aluminum Alloy and Preparation Technology ,Master Thesis[D]. Beijing:Beijing University of Chemical Technology, 2013)
[10] (张培. 铝合金阳极氧化膜结构、制备工艺及显微硬度的关系研究,硕士学位论文[D]. 北京: 北京化工大学, 2013)
[11] Zhou H R, Li X G, Dong C F.Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it’s anodic film[J]. Equipment Environmental Engineering, 2006, 3(1): 1
[11] (周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展[J]. 装备环境工程, 2006, 3(1): 1)
[12] Feng C, Huang Y H, Shen Y F, et al.Effort of surface on the corrosion resistance of 6061 aluminum alloy[J]. Equipment Environmental Engineering, 2015, 12(4): 100
[12] (冯驰, 黄运华, 申玉芳等. 不同表面状态对6061铝合金耐蚀性能的影响研究[J]. 装备环境工程, 2015, 12(4): 100)
[13] Kong D J, Wang J H, Salt spray corrosion and electrochemical corrosion propertiesof anodic oxide film on 7475 aluminum alloy[J]. J. Alloys Compd., 2015, 632: 286
[14] Wang B B, Wang, Z Y, Han W ,et al. Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in Western China[J]. Corros. Sci., 2012, 59: 63
[15] Mubarok M Z, Wahab, Sutarno, et al.Effects of anodizing parameters in tartaric-sulphuric acid on coating thickness and corrosion resistance of Al 2024 T3 alloy[J]. Journal of Minerals and Materials Characterization and Engineering, 2015, 3(3): 154
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Dan ZHANG,Zhenyao WANG. Corrosion Behavior of Zinc Exposed to Salt Lake Area for 48 Months[J]. 材料研究学报, 2019, 33(8): 603-613.
No Suggested Reading articles found!