Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (1): 57-64    DOI: 10.11901/1005.3093.2016.158
Orginal Article Current Issue | Archive | Adv Search |
Study on Pyrolysis Kinetics of Typical Carbon Fiber Bidirectional Sheet
Yanying XU1,2,Ying ZHANG1,2,Zhi WANG1,2(),Jian CHEN1,2
1 Liaoning Key Laboratory of General aviation, Shenyang Aerospace University, Shenyang 110136, China
2 Liaoning Key Laboratory of Aircraft Fire Explosion Control and Reliability Airworthiness Technology, Shenyang Aerospace University, Shenyang 110136, China
Cite this article: 

Yanying XU,Ying ZHANG,Zhi WANG,Jian CHEN. Study on Pyrolysis Kinetics of Typical Carbon Fiber Bidirectional Sheet. Chinese Journal of Materials Research, 2017, 31(1): 57-64.

Download:  HTML  PDF(959KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of heating rate on the pyrolysis characteristics of a carbon fiber bidirectional sheet (T300-3000) in air stream was investigated by means of DTG-60(AH) TG/DTA simultaneous thermal analyzer. The results show that the thermal degradation behavior of the sheet was affected greatly by heating rate. The temperature related with the maximum mass loss rate shifted towards high temperature,and the distance between the two peaks of DTG curves was gradually larger and the peak areas increased with the increasing heating rate. The pyrolysis process of the carbon fiber bidirectional sheet can be divided into three stages including two decomposition stages of epoxy resin and one of the carbon fiber decomposition. The pyrolysis kinetics curves of the carbon fiber bidirectional sheet were analyzed by Kissinger method and Flynn-Wall-Ozawa method,and the acquired apparent activation energy and the apparent pre-exponential factor for different heating rates were of good accordance with each other. The thermostability of the carbon fiber bidirectional sheet with epoxy resin is relatively strong and controllable within a certain range of mass loss.

Key words:  composites      carbon fiber bidirectional sheet      pyrolysis kinetics      apparent activation energy      thermal stability     
Received:  25 March 2016     
Fund: Supported by Science Public Welfare Research Fund of Liaoning (No.GY2014-C-005) and Natural Science Foundation of Liaoning Province (No.201602567)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.158     OR     https://www.cjmr.org/EN/Y2017/V31/I1/57

Fig.1  TG curves of epoxy resin in different heating rates
Fig.2  DTG curves of epoxy resin in different heating rates
Heating
rates
/℃min-1
The temperature scope of
material loss
/℃
Initial decomposition temperature Ti/℃ Final temperature
Tf /℃
The temperature of maximum weight loss rates
Tp /℃
First
stage
Second
stage
First
stage
Second
stage
5 240~385 385~581 240 581 279 513
10 245~393 393~622 245 622 294 542
20 249~399 480~678 249 678 314 570
30 254~435 481~705 254 705 328 591
40 258~446 502~768 258 768 341 613
Table 1  Pyrolysis parameters of the epoxy resin
Fig.3  TG curves of carbon fiber bidirectional sheet powder in different heating rates
Fig.4  DTG curves of carbon fiber bidirectional sheet powder in different heating rates
Heating
rates
/℃min-1
The temperature scope of material loss/℃ Initial decomposition temperature Ti /℃ Final temperature
Tf /℃
The temperature of maximum weight loss rates Tp /℃
First
stage
Second stage Third stage First
stage
Second stage Third
stage
5 241~357 459~537 573~704 241 704 260 492 637
10 244~389 393~570 570~751 244 751 279 518 679
20 244~397 422~573 573~794 244 794 297 - 692
30 245~416 416~597 597~887 245 887 308 538 722
40 258~428 428~617 617~917 258 917 318 566 765
Table 2  Pyrolysis parameters of the carbon fiber bidirectional sheet powder
Fig.5  TG curves of carbon fiber bidirectional sheet blocks in different heating rates
Fig.6  DTG curves of carbon fiber bidirectional sheet blocks in different heating rates
Materials Heating rates
/℃min-1
The temperature
scope of material
loss/℃
Initial decomposition temperature
Ti /℃
Final temperature Tf /℃ The temperature of
maximum weight loss rates Tp /℃
First
stage
Second
stage
Third
stage
First
stage
Second stage Third
stage
Carbon fiber
blocks
5 244~451 451~573 573~779 244 779 351 493 735
10 247~478 478~567 567~811 247 811 368 541 689
20 261~486 486~587 587~831 261 831 386 - 707
30 275~489 489~631 631~911 275 911 402 - 754
40 283~496 496~638 638~991 283 991 410 594 861
Table 3  Pyrolysis parameters of the carbon fiber bidirectional sheet blocks
Fig.7  Relation curves of lnβiTpi2 versus 1Tpiin epoxy resin thermal degradation process
Fig.8  Relation curves of lnβiTpi2 versus 1Tpiin carbon fiber bidirectional sheet powder thermal degradation process
Fig.9  Relation curves of lnβiTpi2 versus 1Tpiin carbon fiber bidirectional sheet blocks thermal degradation process
Fig.10  Relation curves of lgβ versus 1T in epoxy resin thermal degradation process
Fig.11  Relation curves of lgβ versus 1T in carbon fiber bidirectional sheet powder thermal degradation process
Fig.12  Relation curves of lgβ versus 1T in carbon fiber bidirectional sheet blocks thermal degradation process
Materials Heating rates /℃min-1 Slope k=E/R Ek/kJ?mol-1 lnAk
Epoxy resin 5
10
20
30
40
10.318 86 10.1
14.293 119 9.1
Carbon fiber bidirectional sheet powder 10.104 84 10.3
16.861 140 13.3
13.603 113 5.7
Carbon fiber bidirectional sheet blocks 13.372 111 12.8
12.545 104 7.1
6.302 52 -3.04
Table 4  Pyrolysis kinetic parameters of the three materials with Kissinger method
Conversion α/% Apparent activation energy E/kJ?mol-1
Epoxy resin Carbon fiber bidirectional sheet powder Carbon fiber bidirectional sheet blocks
5 91 78 91
10 102 93 160
15 99 119 172
20 102 93 221
25 102 92 68
30 110 98 117
35 121 105 129
40 160 107 163
45 208 106 162
50 269 113 156
55 196 113 143
60 168 105 131
65 130 105 120
70 114 97 113
75 102 97 107
80 102 94 102
85 97 84 100
90 91 79 97
95 84 82 93
Table 5  Apparent activation energy of the three materials with Flynn-Wall-Ozawa method
[1] Li J L, Zhao F, Zhang Y, et al.Application of carbon fiber and its composites in military industry[J]. Synth. Fiber China, 2014, 43(3): 33
[1] (李建利, 赵帆, 张元等. 碳纤维及其复合材料在军工领域的应用[J]. 合成纤维, 2014, 43(3): 33)
[2] Chen K S, Yeh R Z.Pyrolysis kinetics of epoxy resin in a nitrogen atmosphere[J]. J. Hazard. Mater., 1996, 49: 105
[3] Wu L Y.The application extend of advanced composite materials: technology markets of ACM application in aeronautics, astronautics and civil aviation[J]. New Chem. Mater., 2012, 40(1): 4
[3] (吴良义. 先进复合材料的应用扩展: 航空、航天和民用航空先进复合材料应用技术和市场预测[J]. 化工新型材料, 2012, 40(1): 4)
[4] Eibl S.Influence of carbon fibre orientation on reaction-to-fire properties of polymer matrix composites[J]. Fire Mater., 2012, 36: 309
[5] Szolnoki B, Bocz K, Sóti P L, et al.Development of natural fibre reinforced flame retarded epoxy resin composites[J]. Polym. Degrad. Stabil., 2015, 119: 68
[6] Régnier N, Fontaine S.Determination of the thermal degradation kinetic parameters of carbon fibre reinforced epoxy using TG[J]. J. Therm. Anal. Calorim., 2001, 64: 789
[7] Quang Dao D, Luche J, Richard F, et al.Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeter[J]. Int. J. Hydrogen Energy, 2013, 38: 8167
[8] Yu Q, Chen P, Lu C.Numerical simulation of thermal stress distribution in CF/BMI composite subjected to thermal cycles[J]. Chinese J. Mater. Res., 2012, 26: 583
[8] (于祺, 陈平, 陆春. 碳纤维/双马树脂基复合材料在热循环过程中热应力分布的数值模拟[J]. 材料研究学报, 2012, 26: 583)
[9] Chen B, Wan H, Mu J Y, et al.Ablative mechanism of carbon-fiber/epoxy composite irradiated by repetition frequency laser[J]. High Power Laser and Particle Beams, 2008, 20: 547
[9] (陈博, 万红, 穆景阳等. 重频激光作用下碳纤维/环氧树脂复合材料热损伤规律[J]. 强激光与粒子束, 2008, 20: 547)
[10] Huang C, Yang H T, Li X Y, et al.Research and development of Kissinger equation[J]. Chinese J. Explos. Propel., 2014, 37: 26
[10] (黄川, 杨洪涛, 李翔宇等. 基辛格方程的研究与发展[J]. 火炸药学报, 2014, 37: 26)
[11] Hu R Z, Gao S L, Zhao F Q, et al.Thermal Analysis Kinetics [M]. 2nd Ed. Beijing: Science Press, 2008
[11] (胡荣祖, 高胜利, 赵凤起等. 热分析动力学 [M]. 第二版. 北京: 科学出版社, 2008)
[12] Chen Z Q, Liu H B, He Y D, et al.Thermal characteristics of high char yield phenolic resin[J]. Eng. Plast. Appl., 2006, 34(11): 56
[12] (陈智琴, 刘洪波, 何月德等. 高残炭率酚醛树脂的耐热性能研究[J]. 工程塑料应用, 2006, 34(11): 56)
[13] He H Z, Luo Z Y, Cen K F.Study on dynamic reaction parameters of anthracite combustion by using different thermoanalytical methods[J]. Power Eng., 2005, 25: 493
[13] (何宏舟, 骆仲泱, 岑可法. 不同热分析方法求解无烟煤燃烧反应动力学参数的研究[J]. 动力工程, 2005, 25: 493)
[14] Ren N, Zhang J J.Progress in datum treatment methods of thermal analysis kinetics[J]. Progr. Chem., 2006, 18: 410
[14] (任宁, 张建军. 热分析动力学数据处理方法的研究进展[J]. 化学进展, 2006, 18: 410)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[7] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[8] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[9] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[14] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[15] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
No Suggested Reading articles found!